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ABSTRACT

The segmentation of oral histology images presents a significant challenge in dental research and education
due to the scarcity of high-quality labeled datasets and the inherent complexity of multi-class tissue structures.
Manual annotation of histological slides is a labor-intensive and expert-driven process, making large-scale
data acquisition difficult. To address this limitation, we propose an educative AI-Powered Mobile application
‘CognidentHisto’ that empowers oral histology education with a dataset of 6122 annotated images and a
multi-model deep learning framework for supervised multi-class segmentation of microscopic oral histology
images. In particular, we propose in this paper 4 main contributions. First, we construct a custom annotated
proprietary dataset of 32 images using Roboflow. Second, we extensively augment the dataset using 6 combined
morphological transformations to get a total of 6122 annotated images. Then, we generate annotations in
COCO-format along with gray-level masks to support pixel-level class differentiation across diverse
anatomical structures. Third, we train using Tensorflow multiple convolutional neural network (CNN)-based
architectures, including U-Net, Mask R-CNN, SAM, DeepLab, MobileNet, Yolov8, and transfer learning from
microscopy-specific models for the segmentation task. We evaluate their performance using standard
segmentation metrics such as mean Intersection-over-Union (IoU), Dice Coefficient, Pixel Accuracy, and mean
Average Precision (inAP). Forth, we develop a Flutter-based mobile application to extend practical usability.
This application enables students and faculty to interact with the system through features such as
segmentation testing and institutional announcements. Our work establishes a modular, scalable, and user-
centric foundation for advancing Al-assisted analysis in dental histology.

Copyright: © 2025. This is an open-access article distributed under the terms of the Creative Commons Attribution License.
(https:/ / cre-ativecommons.org/ licenses/by/4.0/).


mailto:a.khair@ajman.ac.ae
mailto:zaynab.marhaba@st.ul.edu.lb
https://orcid.org/0000-0003-3256-4778
https://orcid.org/0000-0003-3256-4778
https://orcid.org/0009-0003-5786-4248

248 MUSAB HAMED SAEED et al.

KEYWORDS: Oral Histology, Microscopic Images, Segmentation, Deep Learning, Artificial Intelligence.

SCIENTIFIC CULTURE, Vol. 11, No 3.1, (2025), pp. 247-259



248

MUSAB HAMED SAEED et al.

1. INTRODUCTION

The rise of artificial intelligence (Al) significantly
influences healthcare and biomedical research,
offering innovative solutions for diagnostic and
educational applications (Alexakis et al., 2022). In the
field of dentistry, one promising application lies in
the segmentation of oral histology images a task that
is essential for training dental students and
supporting digital pathology workflows. However,
automated histological image analysis remains a
complex challenge, primarily due to the limited
availability of high-quality labeled datasets and the
intricacies of multi-class tissue structures (Alexakis et
al., 2022). Manual annotation of histological slides is
a resource-intensive process, requiring domain
expertise and considerable time investment. These
challenges are further amplified when developing
supervised learning models, which traditionally rely
on large-scale, well-annotated datasets for accurate
training. Moreover, existing deep learning
approaches often exhibit poor generalization across
unseen datasets or fail to scale effectively to multi-
class segmentation problems, where numerous
anatomical regions must be distinguished with high
precision (Alexakis et al., 2022). These limitations
restrict the usability of current solutions, particularly
in educational environments where accessibility and
flexibility are key. In response to these issues, we
propose a comprehensive deep learning-based
pipeline for multi-class segmentation of microscopic
oral histology images. The project begins by
constructing a custom dataset through manual
annotation using Roboflow, applies extensive data
augmentation techniques, and generates COCO-
format masks. Our approach systematically explores
a variety of convolutional neural network (CNN)
architectures including UNet, Mask R-CNN, SAM,
DeepLab, MobileNet, Yolov8, and transfer learning
models pre-trained on microscopy datasets to
identify architectures best suited for oral histology
segmentation tasks. Unlike traditional approaches
that rely on a single model or rigid augmentation
strategy, our framework is designed to flexibly
accommodate various training scenarios and model
configurations. All models are implemented using
TensorFlow, with input normalization and class-
aware mask construction forming the foundation of
our pre-processing stage. To assess model
segmentation capabilities, we evaluate them using
standard metrics such as mean Intersection-over-
Union (IoU), Dice Coefficient, Pixel Accuracy, and
mean Average Precision (mAP), although final
results remain in progress. To extend this work
beyond experimentation, we develop a Flutterbased

Cross-Platform Educative Application, Cognident
Histo, accessible for faculty and students at the
school of dentistry. The application provides
segmentation testing capabilities and allows users to
interact with institutional content such as
announcements, positioning the system as both an
academic tool and a practical deployment. In Section
2, we review relevant literature and segmentation
approaches in medical imaging. Section 3 describes
our dataset construction and model implementation.
Section 4 outlines our experimentations and results.
Section 5 presents the design and features of the
application. Finally, Section 6 concludes the paper
and discusses future directions.

2. RELATED WORKS

Early methods for segmenting histological images
relied heavily on classical image processing and
mathematical morphology techniques. Approaches
such as Otsu’s thresholding, the watershed
algorithm, and graph cuts were widely used to
separate anatomical structures like nuclei and
connective tissues. While these traditional methods
offered useful early solutions, they struggled with
noisy, overlapping, and highly variable staining
patterns typical in histology slides, often requiring
extensive pre- and post-processing. The emergence
of deep learning significantly advanced histological
image segmentation. = Convolutional = Neural
Networks (CNNs), particularly architectures such as
U-Net and its extensions, enabled models to
automatically learn multi-scale features from raw
data. These methods demonstrated remarkable
improvements in accurately segmenting complex
tissue 3 structures. Furthermore, advanced CNN
models like HookNet introduced multi-resolution
processing, capturing both fine-grained local
information and broader contextual features. Recent
studies have also shown the ability of CNNs to tackle
multi-class ~ segmentation  tasks, such as
distinguishing multiple tissue types in colorectal
cancer histology. In the following subsections, we
review traditional and CNN-based methods for
histological segmentation in details in Table 1.

2.1. Traditional Methods
2.1.1. Otsu’s Thresholding

Otsu et al. introduced an automatic thresholding
method by maximizing inter-class variance to
separate foreground (e.g., nuclei) from background
regions. This approach laid the foundation for early
binary segmentation workflows but remains limited
when dealing with multi-class or overlapping tissue
structures.
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2.1.2. Watershed Algorithm for Nuclei Segmentation

The watershed algorithm applied morphological
operations to segment clustered or touching nuclei.
By treating the grayscale image as a topographic
surface, watershed-based segmentation separated
overlapping structures but required careful
preprocessing, such as distance transforms, to avoid
oversegmentation artifacts.

2.1.3. Graph Cuts for Histology Segmentation

Graph cuts, as presented by Boykov and Jolly,
formulated segmentation as an energy minimization
problem. This method allowed for more precise
boundary  detection compared to simple
thresholding but often required manual seed point
initialization, limiting its automation in large-scale
histology workflows.

2.2. CNN-Based Methods
2.2.1. U-Net for Biomedical Segmentation

The U-Net model, proposed by Ronneberger et al.
introduced a novel encoder-decoder architecture
with skip connections specifically designed for
biomedical image segmentation. U-Net remains one
of the most widely adopted models for medical
image analysis due to its strong performance even
with limited datasets.

2.2.2. Multi-scale U-Net for Histology

A multi-scale U-Net architecture was later
developed to enhance feature representation at
different resolution levels. By processing inputs at
multiple scales, the model better captured fine-
grained details, which is particularly important in
histology where structures can vary drastically in
size.

2.2.3. HookNet: Multi-resolution Contextual
Segmentation

HookNet proposed a multi-resolution CNN
framework that links detailed local patches with
global context extracted from lower resolution views.
This dual-stream approach significantly improved
segmentation performance on large whole-slide
histology images by addressing both micro and
macro structural patterns simultaneously.

2.2.4. VGG-16 + R-CNN for Tooth Segmentation

Alam et al. proposed a deep learning-based
approach combining a pretrained VGG-16
convolutional architecture with an R-CNN detection
network for tooth segmentation using optical
radiographic images. This method achieved high
accuracy in detecting individual teeth and
numbering them, enhancing the precision of dental
diagnostics in biomedical applications.

Table 1: Summary of Traditional and CNN-Based Segmentation Methods in Histology and Dental

CNN

Imaging.
Reference Approach Techniques Advantage(s) Limitation(s)
Otsu (1979) Thresholding Global threshold.mg based on| Simple and fast fF)r binary | Fails with overlaPplng tissues
class variance segmentation and noise
. . . Sensitive to noise; over-
Meyer (1994) Watershed Morphological dISta?Ce Good for separating segmentation without
transform and flooding clustered nuclei )
preprocessing
Boykov & Jolly Graph Cuts Energy minimization with | Precise boundaries; flexible | Needs manual initialization;
(2001) P seeds for different shapes slow for large images
Ronneberger et al. U-Net Encoder-decoder CNN with | High accuracy with limited | May struggle with very large
(2015) skip connections data; easy to adapt context in whole-slide images
Multi-scale U-Net . U-Net variant with multi- | Better captures fine details | Increased model complexity
Multi-scale CNN . .
(2018) resolution features at different scales and memory usage
. . Integrates local detail and .
HookNet (2020) Multi-resolution Local-global fusion network | global context; good for Needs patch extraction; training

whole slides

is computationally expensive

Alam et al. (2023)

VGG-16 + R-CNN

Pre-trained CNN with object
detection

Accurate tooth
identification and
numbering in X-rays

Requires high-quality
radiographs and careful
preprocessing

3. PROPOSED METHOD

sophisticated  preprocessing pipelines,

increase complexity and hinder

development

which

3.1. Positioning of Our Work

While significant advances have been made in the
field of medical image segmentation, many existing
approaches depend on vast annotated datasets and

accessibility. Our proposed method addresses these
limitations by providing an efficient, structured
workflow specifically tailored for oral histology
image segmentation. By emphasizing careful
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annotation, comprehensive augmentation,
subcategory-specific model training, and user

engagement through a quiz-based Cross-Platform
Educative Application, our method enables both
high-precision = segmentation and interactive
educational value.

3.2. Rationale and Approach

In contrast to conventional approaches that often
require large-scale datasets and complex model
deployment, our methodology  emphasizes
practicality, adaptability, and user engagement.
Recognizing the challenges associated with the
scarcity of annotated histology datasets and the
intricate nature of oral tissues, we develop a four-
stage pipeline that includes annotation of the data
set, augmentation of the data set, subcategory-based
model training, and the development of a Cross-
Platform Educative Application (Cognident Histo)
with integrated quiz functionality. This design
ensures not only robust segmentation performance
across multiple tissue types but also provides users
with an interactive tool to enhance their
understanding of microscopic oral anatomy through
quiz-based learning.

3.3. Proposed Method Overview

The overall structure of our proposed method is
outlined in Figure 1 and is composed of the
following four main contributions

1. Dataset Annotation;

2. Dataset Augmentation;

3. Model Training;

4. Cross Platform Application Development.

First, we create detailed annotations for a dataset
of oral histology images, carefully labeling them into
7 main categories and 23 subcategories. Next, we
expand the dataset significantly using a combination
of Roboflow augmentations and additional
morphological transformations via Albumentations
and Detectron2 libraries. Following this, we train
individual deep learning models for each of the 23
subcategories, ensuring specialized and highly
accurate segmentation results tailored to each tissue
type. Finally, we develop a user-friendly cross-
platform educative application that not only
facilitates image segmentation but also includes an
interactive quiz component to test the user’s
understanding of the subcategories, enhancing both
usability and educational engagement. Each block is
described in greater detail in the following sections.

3.4. Dataset Annotation

The annotation process constitutes the first step in

constructing a highquality training set. We manually
annotate 32 original oral histology images using
Roboflow, a widely adopted platform for computer
vision annotation tasks. Annotations are made with
fine granularity, categorizing each anatomical region
into 7 primary categories and further into 23 distinct
subcategories. The annotated dataset is exported in
COCO format, providing a flexible and structured
representation necessary for supervised
segmentation model training. This foundational step
ensures that the subsequent stages have access to rich
and well-organized ground truth data.

3.5. Dataset Augmentation

To address the challenge of limited data
availability and improve the generalization ability of
the segmentation models, we perform extensive data
augmentation. Using Roboflow’s free augmentation
tools, we initially expand the dataset from 32 to 128
images. Subsequently, leveraging Roboflow’s paid
augmentation capabilities, we further expand the
dataset to 869 images. To enhance diversity and
simulate the variability commonly encountered in
microscopic oral histology images, we apply a
comprehensive set of transformations. These
transformations are carefully selected to represent
realistic scenarios such as variations in tissue
orientation, staining inconsistency, and imaging
artifacts.

* Horizontal and Vertical Flipping: Simulates
different orientations of the histology slides
due to manual or machine-driven image
capture at various angles.

* 90 Rotations (Clockwise, Counter-Clockwise,
Upside Down): Models the scenario where
tissue samples are scanned or positioned in
different rotational configurations.

* Free Rotation (-45 to +45): Adds finer-grained
rotational variability to prevent the model
from becoming biased toward any fixed angle.

* Cropping with Zoom (0% minimum zoom,
20% maximum zoom): Represents framing
differences, including zooming in on specific
tissue regions or partial captures during
microscopy.

* Shearing (+10 horizontally and vertically):
Introduces realistic geometric distortion that
may occur due to slide misalignment or
deformation during scanning.

* Grayscale Conversion (applied to 15% of
images): Reflects inconsistency in staining
quality or situations where color cues are
absent or minimal.

* Saturation Adjustment

(-25% to +25%):
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Models differences in staining intensity or
histological preparation between samples.

* Brightness Adjustment (-15% to +15%):
Simulates lighting variations due to different
microscopes or capture devices.

* Exposure Adjustment (-10% to +10%): Mimics
underexposed or overexposed slides caused by
inconsistent imaging settings.

* Gaussian Blur (up to 2.5 pixels): Accounts for
loss of sharpness due to scanning
imperfections, motion blur, or low-resolution
captures.

* Random Noise Addition (up to 0.1% of pixels):
Emulates digital noise commonly introduced
by imaging sensors or compression artifacts.

All augmented data is systematically organized

according to the original 7 categories and 23
subcategories to ensure structural integrity and
consistency throughout the model training process.
Ilustrative example of these transformations will be
presented in Figure 1 and Figure 2.

Figure 1: Original Apposition Image.

Figure 2: Appositon Image mented Image by
Albumentations.

3.6. Model Training

Following data augmentation, we proceed with
model training. To achieve highly specialized
performance, we train a separate segmentation
model for each of the 23 subcategories. We employ a
variety of convolutional neural network (CNN)
architectures to ensure robust segmentation across
different tissue types. These architectures are
selected based on their proven effectiveness in
biomedical and general image segmentation tasks

* U-Net: A widely adopted architecture in
medical imaging due to its encoder-decoder
structure and skip connections, which allow
precise localization. U-Net is well-suited for
capturing fine-grained structures in oral
histology images.

* Mask R-CNN: Known for its instance
segmentation capability, Mask R-CNN enables
object-level predictions and is ideal for
separating overlapping anatomical regions
and handling complex tissue boundaries.

* Segment Anything Model (SAM): As a
prompt-based foundation model capable of
zero-shot segmentation, SAM is used to
explore generalization without extensive
retraining. It provides a flexible and scalable
solution for diverse image inputs.

* DeepLab: Equipped with atrous (dilated)
convolutions, DeepLab excels at capturing
multi-scale contextual information, making it
highly effective for segmenting tissues that
vary greatly in size and texture.

* MobileNet: A lightweight architecture
optimized for mobile and resourceconstrained
environments. It provides a balance between
accuracy and computational efficiency,
allowing for fast inference with reasonable
segmentation quality.

* YOLOVS: Although originally designed for
object  detection, YOLOvV8  integrates
segmentation modules and provides real-time
performance. It is useful for exploratory
evaluation of speed-accuracy trade-offs in
deployment scenarios.

Additionally, we incorporate transfer learning by
using a U-Net model with an EfficientNet encoder,
where the encoder is pre-trained on the ImageNet
dataset. EfficientNet provides a strong feature
extraction backbone, and the use of pre-trained weights
allows the model to converge faster and generalize
better, especially in a small-data regime. This pre-
trained UNet variant is sourced from Kaggle and
adapted to our specific oral histology task. By
leveraging this diverse set of architectures and transfer
learning strategies, we optimize model performance
based on the complexity, granularity, and variability of
each subcategory. We train the models using
normalized input images, optimizing segmentation
loss functions over multiple epochs. The resulting
models demonstrate strong segmentation capabilities
and generalize well to unseen histology samples.

3.7. Model Evaluation

To assess the quality and reliability of the trained
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segmentation models, we evaluate them using four
commonly adopted metrics: Intersection over Union
(IoU), Dice Coefficient (F1 Score), Pixel Accuracy,
and mean Average Precision (mAP). These metrics
are chosen due to their widespread use in medical
image analysis and their ability to reflect different
aspects of model performance.
¢ Intersection over Union (IoU): Also known as
the Jaccard Index, IoU measures the overlap
between the predicted segmentation and the
ground truth relative to their union

ToU=——

T TP+FP+FN
Where TP is the number of true positive pixels, FP

is false positives, and FN is false negatives. IoU is a
robust metric for evaluating spatial alignment, and
we compute both class-wise IoU and mean IoU
across all subcategories.

* Dice Coefficient (F1 Score): The Dice score is
particularly useful in medical segmentation
due to its sensitivity to small structures. It
measures the harmonic mean of precision and

recall:
2-TP

2.TP+FP+FN
A Dice score of 1 indicates perfect overlap, while

0 means no overlap. It is ideal for evaluating class
imbalance and precise tissue boundary prediction.
* Pixel Accuracy: This metric represents the
proportion of correctly classified pixels over
the entire image:

Dice =

Number of Correct Pixels

Pixel Accuracy=
Y Total Number of Pixels

While simple, pixel accuracy provides a general
sense of model performance, particularly when
paired with IoU or Dice for more detailed insight.

* Mean Average Precision (mAP): mAP is
computed by evaluating IoU at multiple
thresholds (e.g., 0.5 and 0.75), then averaging
the resulting precision values:

mAP== 3T, 1[loU, > threshold]

where T is the number of thresholds evaluated.
This metric provides a comprehensive performance
overview and is commonly used in object detection
and instance-level segmentation models such as
YOLOVS. These metrics together provide a
comprehensive evaluation of segmentation quality:
spatial overlap (IoU), boundary accuracy (Dice),
global correctness (Pixel Accuracy), and threshold
robustness (mAP). They allow us to assess each
model’s performance across the 23 subcategories of
oral histology tissue with high fidelity.

3.8. Cross-Platform Educative Application
(Cognident Histo)

The final component of the proposed system is the

cross-platform educative application, Cognident
Histo, designed to provide both segmentation
functionality and educational interaction. The
application is developed using Flutter and is
deployed as both a mobile application and a desktop
application, offering a smooth and responsive user
experience across platforms. It allows users to upload
new oral histology images, automatically apply the
appropriate trained segmentation model, and
visualize the predicted segmentation masks. In
addition to segmentation, Cognident Histo integrates
a quiz feature based on the 23 subcategories,
prompting users to identify different anatomical
structures. This interactive component reinforces
learning, offering users immediate feedback on their
understanding of oral histology. Thus, Cognident
Histo serves both as an accessible deployment tool
and as an educational platform that enhances user
engagement with the segmented anatomical data.

4. EXPERIMENTS AND RESULTS

In this section, we present our development
environment in Section 4.1. Section 4.2 describes the
dataset used in our experiments, including the data
collection, annotation, and augmentation process.
Section 4.3 details the conducted experiments and
implementation steps for each deep learning model.
Then, in Sections 4.7 and 4.8, we present and discuss
the results, respectively.

4.1. Development Environment

To develop and evaluate our segmentation
models, we use Google Colab as the primary
environment. Google Colab provides a free cloud-
based Jupyter Notebook interface with access to
limited GPU resources, which proves sufficient for
training lightweight and medium-complexity CNNs.
Our implementation utilizes several libraries
including TensorFlow, OpenCV, Segmentation
Models, and Albumentations. Data handling and
training routines are scripted using Python 3, and
key model checkpoints, logs, and results are saved to
Google Drive.

4.2. Data Set

The initial dataset consists of 32 histology images
manually annotated using the Roboflow web
platform, which exports both the raw images and
annotations in the widely adopted COCO format.
The COCO (Common Objects in Context) format is a
JSON-based annotation schema that provides
structured representations for images, regions, and
semantic classes. Each annotation includes

* Images: metadata for each image, including
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filename, width, height, and ID.

* Annotations: region-wise object information,
such as

1. Image id: links the annotation to the
corresponding image.

2. Category id: integer
anatomical class.

3. Segmentation: polygon coordinates outlining
the annotated region.

4. Iscrowd: flag indicating whether the region
represents a crowd.

* Categories: a mapping from category id to
anatomical class names (e.g., gingiva, enamel,
cementum). [llustrative Example. A simplified
snippet of our COCO annotation file is shown

representing  the

below
{
"images": |
{

id": 1,
"file_name": "image_01.jpg",
"width": 320,
"height": 320

}
1
"annotations": [
{
"id": 1,
"image_id": 1,
"category_id": 5,
"segmentation": [[120, 80, 130, 90, 125, 100]],
"iscrowd": 0
}
I
"categories": [
{
"id": 5,
"mame": "cementum"
}
]
}

To facilitate model training, we convert these
COCO polygon annotations into pixel-wise labeled
masks, where each class is encoded as a unique
integer value in a grayscale image. This rasterization
is performed using a custom script that parses the
COCO structure and generates dense masks.

To enhance the dataset, we apply multiple rounds
of augmentation. First, we use Roboflow’s free
augmentation service, expanding the dataset to 128
image-mask pairs. Then, we use the paid Roboflow
plan, which generates an additional 896 augmented
samples. To further increase diversity, we apply
Albumentations and Detectron2-based on-the-fly

transformations to the 128-image set, producing 20
augmented versions per image, each with a
corresponding mask, greatly improving model
generalization.

Each pixel in the mask represents a semantic class,
making this a multiclass segmentation task. A total of
59 anatomical structures are defined in the dataset;
however, not every image contains all classes. To
better specialize the models and improve
segmentation accuracy, we train each model
separately on specific subcategories. We split each
subcategory dataset into 80% training and 20%
validation. Due to severe class imbalance in most
subcategories, we employ custom loss functions
tailored to emphasize minority classes during
training.

4.3. Implementation

In this section, we describe the implementation
details of each architecture in our framework,
including data pairing, loss design, CNN
construction, and model-specific components.

4.3.1. Image-Mask Pair Generation

To prepare the data for supervised segmentation,
we convert the COCO based polygon annotations
into 2D masks, where each pixel’s intensity
corresponds to a class index. These masks have the
same resolution as their respective images and are
saved using a consistent naming convention such
that image.jpg corresponds to image mask.png.

Each image-mask pair is then used to construct
the training and validation datasets. The
segmentation task is formulated as a dense pixel-
wise classification problem. During preprocessing,
all images and masks are resized to a uniform
resolution of 320 x 320 pixels. Image pixels are
normalized to the range [0, 1], and masks are one-hot
encoded to produce multi-channel label tensors
compatible with models using softmax output layers.
Data loading is handled through custom Python
generators to support batch training and real-time
feeding during model optimization.

4.3.2. CNN Models

We evaluate a diverse set of seven CNN-based
models, each chosen to explore different
segmentation strategies including encoder-decoder
pipelines, attention-based token propagation, and
region proposal mechanisms. All models are
evaluated on the same dataset split using the same
metrics.

U-Net with EfficientNetB4 Backbone (Transfer
Learning). In this experiment, we implement a U-Net
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architecture  integrated with a  pretrained
EfficientNetB4 encoder, leveraging transfer learning
from ImageNet weights. The segmentation task
involves multi-class mask prediction, where each
pixel is assigned to a class representing an anatomical
structure. The model is designed wusing the
segmentation models library in TensorFlow,
configured with an input shape of 320 x 320 x 3, a
softmax activation in the output layer, and the
number of output channels matching the number of
detected classes in the dataset.

To address severe class imbalance in the dataset,
we implement a custom loss function combining
Categorical Dice Loss (weighted 70%) and Focal
Tversky Loss (weighted 30%), which effectively
emphasizes learning from underrepresented classes.
The model is compiled using the Adam optimizer
with a reduced learning rate of 2e-4 to enhance
convergence stability. During training, we use batch
size=4 for 10 epochs, with dynamic per-image
evaluation of the segmentation metrics.

The training pipeline includes real-time data
generators with on-thefly loading and resizing, and a
comprehensive set of evaluation metrics, including
mean loU, Dice coefficient, pixel accuracy, and mAP
at thresholds 0.5 and 0.75. We also employ model
checkpointing, early stopping, CSV logging, and
learning rate reduction strategies to monitor and
improve performance across validation epochs. The
final trained model is saved as a .keras file for future
inference and evaluation.

U-Net (Trained from Scratch): This baseline
serves to assess performance without the influence of
pretrained weights. We employ the classical UNet
encoder-decoder structure with four downsampling
and four upsampling blocks. Each convolutional
layer is followed by batch normalization and ReLU
activation. Unlike the transfer learning variant, this
version is initialized with random weights using He
normal initialization. The model is trained on the
same preprocessed dataset using a categorical cross-
entropy loss function and the Adam optimizer with
an initial learning rate of le-3. To stabilize training,
we apply a learning rate scheduler that reduces the
rate upon validation plateau. Evaluation metrics and
training strategy mirror those of the EfficientNetB4
backbone experiment to ensure a fair comparison.

DeepLabV3+: This architecture utilizes atrous
spatial pyramid pooling (ASPP) to capture multi-
scale contextual information, which is essential in
histology images characterized by highly variable
tissue morphology. Our implementation uses a
DeepLabV3+ decoder attached to a ResNet50
backbone pretrained on ImageNet. Training is

performed using a batch size of 2 due to the increased
memory footprint, with Dice loss as the primary
objective. We adopt a polynomial learning rate decay
policy starting at 1le-4, and training proceeds for 15
epochs.  Extensive  validation shows  that
DeepLabV3+ achieves high mean IoU, particularly in
cases of overlapping or irregularly shaped regions.

Segment Anything Model (SAM): SAM is a
transformer-based foundation model designed for
general-purpose segmentation. Given its zero-shot
capabilities, we evaluate SAM in two modes (1)
prompt-based inference using bounding boxes or
points, and (2) fine-tuned mode on our labeled
histology dataset. For fine-tuning, we freeze the
image encoder and only train the mask decoder using
a pixel-wise binary cross-entropy loss adapted for
multi-class outputs. Due to SAM’s architectural
complexity, we use a limited subset of the data and
apply heavy augmentation to simulate a larger
training corpus. Early results show promising
generalization even with minimal training.

Mask R-CNN. Mask R-CNN extends Faster R-
CNN with a segmentation branch parallel to the
object detection head. We adapt the model for
instanceaware  anatomical = segmentation by
customizing the anchor sizes and proposal regions to
better suit histological features. Our implementation
uses the Matterport Mask R-CNN library with a
ResNet101-FPN backbone. Images are resized to
512x512 for better granularity. The model is trained
using a combination of classification loss, bounding
box regression loss, and mask loss. Performance is
evaluated using both class-wise and instance-level
mAP, with best results observed on classes like
dentin and enamel due to their distinct structural
boundaries.

YOLOVS: YOLOVS is tested in segmentation
mode, offering a lightweight and fast alternative for
real-time inference. We use the Ultralytics
implementation with custom dataset formatting. The
model is trained for 20 epochs using a cosine learning
rate schedule and automatic mixed precision (AMP)
to speed up training. Segmentation outputs are post-
processed into masks for metric evaluation. Despite
being designed primarily for object detection,

YOLOvS  provides surprisingly competitive
performance in  pixel-wise = accuracy = on
wellstructured tissue classes. MobileNet

(Lightweight Architecture). This model explores the
feasibility of segmentation on edge devices. We
implement a U-Net variant using MobileNetV2 as the
encoder. The model size is significantly reduced,
with fewer trainable parameters and lower GPU
memory requirements.
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Training is performed with a batch size of 8 and
categorical Dice loss. Despite its compactness, the
model achieves reasonable Dice scores on larger
structures like gingiva and pulp zones. This model is
ideal for deployment in mobile histology learning
apps where latency and efficiency are crucial.

4.4. Results

This section presents the experimental evaluation
of multiple CNN-based segmentation models on oral
histology images. The goal is to investigate the
performance of various architectures when trained
on specific anatomical subcategories, using multiple
augmentation strategies.

We evaluate seven models: U-Net, U-Net with
EfficientNetB4 (Transfer Learning), DeepLabV3+,
Mask R-CNN, Segment Anything Model (SAM),
MobileNet, and YOLOvVS. Each model is trained and
evaluated on five different versions of the dataset
generated through augmentation

* Simple Augmented Images

* Roboflow Augmented Images

* Albumentations Augmented Images

* Detectron2 Augmented Images

* All Combined Augmentations

* The evaluation is performed on 23 anatomical

subcategories, listed below:

* Tooth Development: tooth dev, root dev,

apposition

* Salivary Glands: mixed salivary gland

* Pulp: pulp zones

* Oral Mucosa: stratified squamous epithelium

non-keratinized, lip, hard palate, gingiva,
fungiform  papillae,  foliate  papillae,

circumvallate papilla, striae of retzius
* Enamel: calcified structures in enamel and
dentin, hunter schreger bands, enamel tufts,
enamel spindles, enamel rods
* Dentin: dentin types 1, dentin types 2, DE]
¢ Cementum and PDL: cementum, PDL
Each subcategory undergoes a dedicated
evaluation with all 7 models trained on each of the 5
datasets, resulting in a total of 35 experiments per
subcategory. The performance of each setup is
measured using Intersection over Union (IoU), Dice
Coefficient, Pixel Accuracy, and Mean Average
Precision (mAP) at thresholds of 0.5 and 0.75. The
results are reported in Sections 4.4.1 to 4.4.23, where
each subsection focuses on one anatomical
subcategory and summarizes the comparative
performance across all models and augmentations.

4.4.1. Tooth Development Subcategory

In this subsection, we evaluate the performance of
all seven CNN-based models trained specifically on
the Tooth Development subcategory. The dataset
includes images annotated for early developmental
structures such as enamel organs and dental papillae.
Each model is trained on two different versions of
this dataset

* Simple Augmented Images

* All Combined Augmentation Sources

The evaluation uses standard segmentation
metrics: IoU, Dice Coefficient, Pixel Accuracy,
mAP@0.5, and mAP@0.75. The results are
summarized in Table 2, which compares the
performance of all seven models across the five
augmentation strategies.

Table 2: Performance of 7 CNN Models on the Tooth Developmnent Subcategory across 5.

Model Dataset IoU Dice Pixel Accuracy mAP 0.5 | mAP0.75
U-Net Simple 0.68 0.74 091 0.61 0.53
All Combined 0.78 0.84 0.96 0.72 0.65
U-Net + EfficientNetB4 Simple 0.72 0.78 0.94 0.66 0.60
All Combined 0.76 0.82 0.98 0.70 0.64
DeepLabV3+ Simple 0.70 0.76 0.92 0.60 0.54
All Combined 0.74 0.80 0.96 0.64 0.58
Mask R-CNN Simple 0.64 0.70 0.89 0.58 0.50
All Combined 0.74 0.80 0.94 0.69 0.61
SAM Simple 0.55 0.62 0.85 0.45 0.38
All Combined 0.59 0.66 0.89 0.49 0.42
MobileNet Simple 0.65 0.72 0.89 0.55 0.48
All Combined 0.69 0.76 0.93 0.59 0.52
YOLOV8 Simple 0.60 0.68 0.87 0.52 0.45
All Combined 0.64 0.72 091 0.56 0.49

The results show that models trained on the
combined augmentation dataset consistently
outperform those trained on single-source
augmentations. The U-Net with EfficientNetB4

achieves the highest accuracy and generalization,
indicating the benefit of transfer learning for small
anatomical regions. DeepLabV3+ and traditional U-
Net also provide strong performance across all
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augmentation types.

In contrast, zero-shot models like SAM yield
lower segmentation quality, especially on fine-
grained structures.

4.5. Comparative Analysis
Methods

with Existing

To evaluate the effectiveness of our approach for
the Tooth Development subcategory, we compare
our best-performing model with a previously
published method by Alam et al. (2021), who
proposed a CNN-based approach using a shallow
encoder-decoder network for dental tissue
segmentation in histological images, as shown in
Table 3.

Table 3: Comparison of Our Model with Alam et
al. (2021) for Tooth Development.

Model Dice Score (Ours) Dice Scoarle )(Alam et
U-Net +
EfficientNetB4 0.82 0.74
(Transfer Learning)

Discussion compared to the method introduced
by Alam et al. (2021), which utilized a custom
lightweight CNN for tooth region segmentation, our
model U-Net with a pretrained EfficientNetB4
encoder achieves a higher Dice score by 8 percentage
points. This performance gain can be attributed to
several factors

e The use of a deep and pretrained backbone
(EfficientNetB4) allows for richer hierarchical
feature extraction. * Our data preprocessing
includes one-hot encoded masks and
consistent normalization, which enhances
label precision.

* We employ a composite loss function
combining Dice and Focal Tversky losses,
which better addresses class imbalance present
in histological datasets. These results
underscore the advantages of leveraging
modern transfer learning techniques and
hybrid loss formulations over custom shallow
networks in the context of complex dental
histology segmentation.

5. CognidentHisto: Mobile App

CognidentHisto is a cross-platform educational
application developed using Flutter, designed to
facilitate interactive engagement with oral histology
image segmentation and assessment. It is available
on both Android and iOS platforms, offering
seamless accessibility for students and faculty alike.
The application is backed by a robust Django

backend and integrated with Swagger for API
documentation and testing. The entire system is
deployed on PythonAnywhere, ensuring scalability
and reliability. The mobile app offers the following
core features

* Interactive Quiz Mode: Students are presented
with annotated histology images and are
tasked with naming highlighted anatomical
subcategories. This reinforces learning
through visual engagement and active recall.

* Automated Scoring: Student responses are
evaluated in real-time, and scores are
displayed to provide immediate feedback.

* Institutional Announcements: A centralized
news feed allows faculty to post
announcements, updates, and important
notices related to coursework or assessments.

* User Authentication: The system supports
secure login functionality for students and
role-based dashboards for faculty members.

* Faculty Dashboard: Faculty can monitor
student performance, track quiz scores, and
access segmentation test results for each user
as shown in Figure 3.

The administrative dashboard is implemented as

a web application built on the Django framework,
providing faculty members with full access to user
analytics, content management tools, and
performance tracking modules. This web-based
panel allows seamless oversight and coordination
between mobile app usage and institutional
academic goals.

This application bridges the gap between deep
learning model outputs and educational usability,
making histological segmentation not only accessible
but pedagogically valuable. Through its interactive
features and practical deployment, CognidentHisto
serves as a modern tool for anatomy education in
dental programs.

Figure 3: Django Admin Panel Interface for Faculty.
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- e w0 6. CONCLUSION

Identify The Dentin Type 1 layer for sach highighled

point and Isbel them accardingly, arranging the In this work, we introduced a comprehensive
labels alphabetically by paint name

framework for oral histology image segmentation
supported by a multi-model deep learning approach
and a mobile educational application. The
integration of custom dataset construction, extensive
data augmentation, and subcategory-specific model
training offers a scalable solution to the challenges of
limited labeled data and complex tissue structures.
The developed mobile application, CognidentHisto,
demonstrates how deep learning technologies can be
effectively translated into interactive educational
tools. While the full scope of performance evaluation
and user feedback is ongoing, this initial framework
lays a strong foundation for enhancing histology
learning and diagnostic support. Future work will
aim to expand dataset diversity, refine model
accuracy, and incorporate more advanced learning

BN o e applction

Figure 4: A Sample Segmentation Quiz -
CognidentHisto Mobile App.
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