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ABSTRACT 

The segmentation of oral histology images presents a significant challenge in dental research and education 
due to the scarcity of high-quality labeled datasets and the inherent complexity of multi-class tissue structures. 
Manual annotation of histological slides is a labor-intensive and expert-driven process, making large-scale 
data acquisition difficult. To address this limitation, we propose an educative AI-Powered Mobile application 
‘CognidentHisto’ that empowers oral histology education with a dataset of 6122 annotated images and a 
multi-model deep learning framework for supervised multi-class segmentation of microscopic oral histology 
images. In particular, we propose in this paper 4 main contributions. First, we construct a custom annotated 
proprietary dataset of 32 images using Roboflow. Second, we extensively augment the dataset using 6 combined 
morphological transformations to get a total of 6122 annotated images. Then, we generate annotations in 
COCO-format along with gray-level masks to support pixel-level class differentiation across diverse 
anatomical structures. Third, we train using Tensorflow multiple convolutional neural network (CNN)-based 
architectures, including U-Net, Mask R-CNN, SAM, DeepLab, MobileNet, Yolov8, and transfer learning from 
microscopy-specific models for the segmentation task. We evaluate their performance using standard 
segmentation metrics such as mean Intersection-over-Union (IoU), Dice Coefficient, Pixel Accuracy, and mean 
Average Precision (mAP). Forth, we develop a Flutter-based mobile application to extend practical usability. 
This application enables students and faculty to interact with the system through features such as 
segmentation testing and institutional announcements. Our work establishes a modular, scalable, and user-
centric foundation for advancing AI-assisted analysis in dental histology. 
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1. INTRODUCTION 
The rise of artificial intelligence (AI) significantly 

influences healthcare and biomedical research, 
offering innovative solutions for diagnostic and 
educational applications (Alexakis et al., 2022). In the 
field of dentistry, one promising application lies in 
the segmentation of oral histology images a task that 
is essential for training dental students and 
supporting digital pathology workflows. However, 
automated histological image analysis remains a 
complex challenge, primarily due to the limited 
availability of high-quality labeled datasets and the 
intricacies of multi-class tissue structures (Alexakis et 
al., 2022). Manual annotation of histological slides is 
a resource-intensive process, requiring domain 
expertise and considerable time investment. These 
challenges are further amplified when developing 
supervised learning models, which traditionally rely 
on large-scale, well-annotated datasets for accurate 
training. Moreover, existing deep learning 
approaches often exhibit poor generalization across 
unseen datasets or fail to scale effectively to multi-
class segmentation problems, where numerous 
anatomical regions must be distinguished with high 
precision (Alexakis et al., 2022). These limitations 
restrict the usability of current solutions, particularly 
in educational environments where accessibility and 
flexibility are key. In response to these issues, we 
propose a comprehensive deep learning-based 
pipeline for multi-class segmentation of microscopic 
oral histology images. The project begins by 
constructing a custom dataset through manual 
annotation using Roboflow, applies extensive data 
augmentation techniques, and generates COCO-
format masks. Our approach systematically explores 
a variety of convolutional neural network (CNN) 
architectures including UNet, Mask R-CNN, SAM, 
DeepLab, MobileNet, Yolov8, and transfer learning 
models pre-trained on microscopy datasets to 
identify architectures best suited for oral histology 
segmentation tasks. Unlike traditional approaches 
that rely on a single model or rigid augmentation 
strategy, our framework is designed to flexibly 
accommodate various training scenarios and model 
configurations. All models are implemented using 
TensorFlow, with input normalization and class-
aware mask construction forming the foundation of 
our pre-processing stage. To assess model 
segmentation capabilities, we evaluate them using 
standard metrics such as mean Intersection-over-
Union (IoU), Dice Coefficient, Pixel Accuracy, and 
mean Average Precision (mAP), although final 
results remain in progress. To extend this work 
beyond experimentation, we develop a Flutterbased 

Cross-Platform Educative Application, Cognident 
Histo, accessible for faculty and students at the 
school of dentistry. The application provides 
segmentation testing capabilities and allows users to 
interact with institutional content such as 
announcements, positioning the system as both an 
academic tool and a practical deployment. In Section 
2, we review relevant literature and segmentation 
approaches in medical imaging. Section 3 describes 
our dataset construction and model implementation. 
Section 4 outlines our experimentations and results. 
Section 5 presents the design and features of the 
application. Finally, Section 6 concludes the paper 
and discusses future directions. 

2. RELATED WORKS 

Early methods for segmenting histological images 
relied heavily on classical image processing and 
mathematical morphology techniques. Approaches 
such as Otsu’s thresholding, the watershed 
algorithm, and graph cuts were widely used to 
separate anatomical structures like nuclei and 
connective tissues. While these traditional methods 
offered useful early solutions, they struggled with 
noisy, overlapping, and highly variable staining 
patterns typical in histology slides, often requiring 
extensive pre- and post-processing. The emergence 
of deep learning significantly advanced histological 
image segmentation. Convolutional Neural 
Networks (CNNs), particularly architectures such as 
U-Net and its extensions, enabled models to 
automatically learn multi-scale features from raw 
data. These methods demonstrated remarkable 
improvements in accurately segmenting complex 
tissue 3 structures. Furthermore, advanced CNN 
models like HookNet introduced multi-resolution 
processing, capturing both fine-grained local 
information and broader contextual features. Recent 
studies have also shown the ability of CNNs to tackle 
multi-class segmentation tasks, such as 
distinguishing multiple tissue types in colorectal 
cancer histology. In the following subsections, we 
review traditional and CNN-based methods for 
histological segmentation in details in Table 1.  

2.1. Traditional Methods 

2.1.1. Otsu’s Thresholding 

Otsu et al. introduced an automatic thresholding 
method by maximizing inter-class variance to 
separate foreground (e.g., nuclei) from background 
regions. This approach laid the foundation for early 
binary segmentation workflows but remains limited 
when dealing with multi-class or overlapping tissue 
structures. 
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2.1.2. Watershed Algorithm for Nuclei Segmentation 

The watershed algorithm applied morphological 
operations to segment clustered or touching nuclei. 
By treating the grayscale image as a topographic 
surface, watershed-based segmentation separated 
overlapping structures but required careful 
preprocessing, such as distance transforms, to avoid 
oversegmentation artifacts.  

2.1.3. Graph Cuts for Histology Segmentation 

Graph cuts, as presented by Boykov and Jolly, 
formulated segmentation as an energy minimization 
problem. This method allowed for more precise 
boundary detection compared to simple 
thresholding but often required manual seed point 
initialization, limiting its automation in large-scale 
histology workflows.  

2.2. CNN-Based Methods 

2.2.1. U-Net for Biomedical Segmentation 

The U-Net model, proposed by Ronneberger et al. 
introduced a novel encoder-decoder architecture 
with skip connections specifically designed for 
biomedical image segmentation. U-Net remains one 
of the most widely adopted models for medical 
image analysis due to its strong performance even 
with limited datasets. 

2.2.2. Multi-scale U-Net for Histology 

A multi-scale U-Net architecture was later 
developed to enhance feature representation at 
different resolution levels. By processing inputs at 
multiple scales, the model better captured fine-
grained details, which is particularly important in 
histology where structures can vary drastically in 
size.  

2.2.3. HookNet: Multi-resolution Contextual 
Segmentation 

HookNet proposed a multi-resolution CNN 
framework that links detailed local patches with 
global context extracted from lower resolution views. 
This dual-stream approach significantly improved 
segmentation performance on large whole-slide 
histology images by addressing both micro and 
macro structural patterns simultaneously.  

2.2.4. VGG-16 + R-CNN for Tooth Segmentation 

Alam et al. proposed a deep learning-based 
approach combining a pretrained VGG-16 
convolutional architecture with an R-CNN detection 
network for tooth segmentation using optical 
radiographic images. This method achieved high 
accuracy in detecting individual teeth and 
numbering them, enhancing the precision of dental 
diagnostics in biomedical applications. 

Table 1: Summary of Traditional and CNN-Based Segmentation Methods in Histology and Dental 
Imaging. 

Reference Approach Techniques Advantage(s) Limitation(s) 

Otsu (1979) Thresholding 
Global thresholding based on 

class variance 
Simple and fast for binary 

segmentation 
Fails with overlapping tissues 

and noise 

Meyer (1994) Watershed 
Morphological distance 
transform and flooding 

Good for separating 
clustered nuclei 

Sensitive to noise; over-
segmentation without 

preprocessing 

Boykov & Jolly 
(2001) 

Graph Cuts 
Energy minimization with 

seeds 
Precise boundaries; flexible 

for different shapes 
Needs manual initialization; 

slow for large images 

Ronneberger et al. 
(2015) 

U-Net 
Encoder-decoder CNN with 

skip connections 
High accuracy with limited 

data; easy to adapt 
May struggle with very large 
context in whole-slide images 

Multi-scale U-Net 
(2018) 

Multi-scale CNN 
U-Net variant with multi-

resolution features 
Better captures fine details 

at different scales 
Increased model complexity 

and memory usage 

HookNet (2020) 
Multi-resolution 

CNN 
Local-global fusion network 

Integrates local detail and 
global context; good for 

whole slides 

Needs patch extraction; training 
is computationally expensive 

Alam et al. (2023) VGG-16 + R-CNN 
Pre-trained CNN with object 

detection 

Accurate tooth 
identification and 

numbering in X-rays 

Requires high-quality 
radiographs and careful 

preprocessing 

3. PROPOSED METHOD 

3.1. Positioning of Our Work 

While significant advances have been made in the 
field of medical image segmentation, many existing 
approaches depend on vast annotated datasets and 

sophisticated preprocessing pipelines, which 
increase development complexity and hinder 
accessibility. Our proposed method addresses these 
limitations by providing an efficient, structured 
workflow specifically tailored for oral histology 
image segmentation. By emphasizing careful 
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annotation, comprehensive augmentation, 
subcategory-specific model training, and user 
engagement through a quiz-based Cross-Platform 
Educative Application, our method enables both 
high-precision segmentation and interactive 
educational value. 

3.2. Rationale and Approach 

In contrast to conventional approaches that often 
require large-scale datasets and complex model 
deployment, our methodology emphasizes 
practicality, adaptability, and user engagement. 
Recognizing the challenges associated with the 
scarcity of annotated histology datasets and the 
intricate nature of oral tissues, we develop a four-
stage pipeline that includes annotation of the data 
set, augmentation of the data set, subcategory-based 
model training, and the development of a Cross-
Platform Educative Application (Cognident Histo) 
with integrated quiz functionality. This design 
ensures not only robust segmentation performance 
across multiple tissue types but also provides users 
with an interactive tool to enhance their 
understanding of microscopic oral anatomy through 
quiz-based learning. 

3.3. Proposed Method Overview 

The overall structure of our proposed method is 
outlined in Figure 1 and is composed of the 
following four main contributions 

1. Dataset Annotation;  
2. Dataset Augmentation;  
3. Model Training;  
4. Cross Platform Application Development. 
First, we create detailed annotations for a dataset 

of oral histology images, carefully labeling them into 
7 main categories and 23 subcategories. Next, we 
expand the dataset significantly using a combination 
of Roboflow augmentations and additional 
morphological transformations via Albumentations 
and Detectron2 libraries. Following this, we train 
individual deep learning models for each of the 23 
subcategories, ensuring specialized and highly 
accurate segmentation results tailored to each tissue 
type. Finally, we develop a user-friendly cross-
platform educative application that not only 
facilitates image segmentation but also includes an 
interactive quiz component to test the user’s 
understanding of the subcategories, enhancing both 
usability and educational engagement. Each block is 
described in greater detail in the following sections.  

3.4. Dataset Annotation 

The annotation process constitutes the first step in 

constructing a highquality training set. We manually 
annotate 32 original oral histology images using 
Roboflow, a widely adopted platform for computer 
vision annotation tasks. Annotations are made with 
fine granularity, categorizing each anatomical region 
into 7 primary categories and further into 23 distinct 
subcategories. The annotated dataset is exported in 
COCO format, providing a flexible and structured 
representation necessary for supervised 
segmentation model training. This foundational step 
ensures that the subsequent stages have access to rich 
and well-organized ground truth data.  

3.5. Dataset Augmentation 

To address the challenge of limited data 
availability and improve the generalization ability of 
the segmentation models, we perform extensive data 
augmentation. Using Roboflow’s free augmentation 
tools, we initially expand the dataset from 32 to 128 
images. Subsequently, leveraging Roboflow’s paid 
augmentation capabilities, we further expand the 
dataset to 869 images. To enhance diversity and 
simulate the variability commonly encountered in 
microscopic oral histology images, we apply a 
comprehensive set of transformations. These 
transformations are carefully selected to represent 
realistic scenarios such as variations in tissue 
orientation, staining inconsistency, and imaging 
artifacts. 

• Horizontal and Vertical Flipping: Simulates 
different orientations of the histology slides 
due to manual or machine-driven image 
capture at various angles. 

• 90 Rotations (Clockwise, Counter-Clockwise, 
Upside Down): Models the scenario where 
tissue samples are scanned or positioned in 
different rotational configurations. 

• Free Rotation (–45 to +45): Adds finer-grained 
rotational variability to prevent the model 
from becoming biased toward any fixed angle. 

• Cropping with Zoom (0% minimum zoom, 
20% maximum zoom): Represents framing 
differences, including zooming in on specific 
tissue regions or partial captures during 
microscopy. 

• Shearing (±10 horizontally and vertically): 
Introduces realistic geometric distortion that 
may occur due to slide misalignment or 
deformation during scanning. 

• Grayscale Conversion (applied to 15% of 
images): Reflects inconsistency in staining 
quality or situations where color cues are 
absent or minimal. 

• Saturation Adjustment (–25% to +25%): 
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Models differences in staining intensity or 
histological preparation between samples. 

• Brightness Adjustment (–15% to +15%): 
Simulates lighting variations due to different 
microscopes or capture devices. 

• Exposure Adjustment (–10% to +10%): Mimics 
underexposed or overexposed slides caused by 
inconsistent imaging settings. 

• Gaussian Blur (up to 2.5 pixels): Accounts for 
loss of sharpness due to scanning 
imperfections, motion blur, or low-resolution 
captures. 

• Random Noise Addition (up to 0.1% of pixels): 
Emulates digital noise commonly introduced 
by imaging sensors or compression artifacts. 

All augmented data is systematically organized 
according to the original 7 categories and 23 
subcategories to ensure structural integrity and 
consistency throughout the model training process. 
Illustrative example of these transformations will be 
presented in Figure 1 and Figure 2. 

 
Figure 1: Original Apposition Image. 

 
Figure 2: Appositon Image Augmented Image by 

Albumentations. 

3.6. Model Training 

Following data augmentation, we proceed with 
model training. To achieve highly specialized 
performance, we train a separate segmentation 
model for each of the 23 subcategories. We employ a 
variety of convolutional neural network (CNN) 
architectures to ensure robust segmentation across 
different tissue types. These architectures are 
selected based on their proven effectiveness in 
biomedical and general image segmentation tasks 

• U-Net: A widely adopted architecture in 
medical imaging due to its encoder-decoder 
structure and skip connections, which allow 
precise localization. U-Net is well-suited for 
capturing fine-grained structures in oral 
histology images. 

• Mask R-CNN: Known for its instance 
segmentation capability, Mask R-CNN enables 
object-level predictions and is ideal for 
separating overlapping anatomical regions 
and handling complex tissue boundaries.  

• Segment Anything Model (SAM): As a 
prompt-based foundation model capable of 
zero-shot segmentation, SAM is used to 
explore generalization without extensive 
retraining. It provides a flexible and scalable 
solution for diverse image inputs.  

• DeepLab: Equipped with atrous (dilated) 
convolutions, DeepLab excels at capturing 
multi-scale contextual information, making it 
highly effective for segmenting tissues that 
vary greatly in size and texture.  

• MobileNet: A lightweight architecture 
optimized for mobile and resourceconstrained 
environments. It provides a balance between 
accuracy and computational efficiency, 
allowing for fast inference with reasonable 
segmentation quality.  

• YOLOv8: Although originally designed for 
object detection, YOLOv8 integrates 
segmentation modules and provides real-time 
performance. It is useful for exploratory 
evaluation of speed-accuracy trade-offs in 
deployment scenarios.  

Additionally, we incorporate transfer learning by 
using a U-Net model with an EfficientNet encoder, 
where the encoder is pre-trained on the ImageNet 
dataset. EfficientNet provides a strong feature 
extraction backbone, and the use of pre-trained weights 
allows the model to converge faster and generalize 
better, especially in a small-data regime. This pre-
trained UNet variant is sourced from Kaggle and 
adapted to our specific oral histology task. By 
leveraging this diverse set of architectures and transfer 
learning strategies, we optimize model performance 
based on the complexity, granularity, and variability of 
each subcategory. We train the models using 
normalized input images, optimizing segmentation 
loss functions over multiple epochs. The resulting 
models demonstrate strong segmentation capabilities 
and generalize well to unseen histology samples. 

3.7. Model Evaluation 

To assess the quality and reliability of the trained 
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segmentation models, we evaluate them using four 
commonly adopted metrics: Intersection over Union 
(IoU), Dice Coefficient (F1 Score), Pixel Accuracy, 
and mean Average Precision (mAP). These metrics 
are chosen due to their widespread use in medical 
image analysis and their ability to reflect different 
aspects of model performance.  

• Intersection over Union (IoU): Also known as 
the Jaccard Index, IoU measures the overlap 
between the predicted segmentation and the 
ground truth relative to their union 

IoU=
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 

Where TP is the number of true positive pixels, FP 
is false positives, and FN is false negatives. IoU is a 
robust metric for evaluating spatial alignment, and 
we compute both class-wise IoU and mean IoU 
across all subcategories.  

• Dice Coefficient (F1 Score): The Dice score is 
particularly useful in medical segmentation 
due to its sensitivity to small structures. It 
measures the harmonic mean of precision and 
recall: 

Dice =
2 · 𝑇𝑃

2.𝑇𝑃+𝐹𝑃+𝐹𝑁
 

A Dice score of 1 indicates perfect overlap, while 
0 means no overlap. It is ideal for evaluating class 
imbalance and precise tissue boundary prediction.  

• Pixel Accuracy: This metric represents the 
proportion of correctly classified pixels over 
the entire image: 

Pixel Accuracy=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠
 

While simple, pixel accuracy provides a general 
sense of model performance, particularly when 
paired with IoU or Dice for more detailed insight.  

• Mean Average Precision (mAP): mAP is 
computed by evaluating IoU at multiple 
thresholds (e.g., 0.5 and 0.75), then averaging 
the resulting precision values:  

mAP=
1

𝑇
 ∑ 1 [𝐼𝑜𝑈𝑡  ≥  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑]𝑇

𝑡=1  

where T is the number of thresholds evaluated. 
This metric provides a comprehensive performance 
overview and is commonly used in object detection 
and instance-level segmentation models such as 
YOLOv8. These metrics together provide a 
comprehensive evaluation of segmentation quality: 
spatial overlap (IoU), boundary accuracy (Dice), 
global correctness (Pixel Accuracy), and threshold 
robustness (mAP). They allow us to assess each 
model’s performance across the 23 subcategories of 
oral histology tissue with high fidelity. 

3.8. Cross-Platform Educative Application 
(Cognident Histo) 

The final component of the proposed system is the 

cross-platform educative application, Cognident 
Histo, designed to provide both segmentation 
functionality and educational interaction. The 
application is developed using Flutter and is 
deployed as both a mobile application and a desktop 
application, offering a smooth and responsive user 
experience across platforms. It allows users to upload 
new oral histology images, automatically apply the 
appropriate trained segmentation model, and 
visualize the predicted segmentation masks. In 
addition to segmentation, Cognident Histo integrates 
a quiz feature based on the 23 subcategories, 
prompting users to identify different anatomical 
structures. This interactive component reinforces 
learning, offering users immediate feedback on their 
understanding of oral histology. Thus, Cognident 
Histo serves both as an accessible deployment tool 
and as an educational platform that enhances user 
engagement with the segmented anatomical data. 

4. EXPERIMENTS AND RESULTS 

In this section, we present our development 
environment in Section 4.1. Section 4.2 describes the 
dataset used in our experiments, including the data 
collection, annotation, and augmentation process. 
Section 4.3 details the conducted experiments and 
implementation steps for each deep learning model. 
Then, in Sections 4.7 and 4.8, we present and discuss 
the results, respectively. 

4.1. Development Environment 

To develop and evaluate our segmentation 
models, we use Google Colab as the primary 
environment. Google Colab provides a free cloud-
based Jupyter Notebook interface with access to 
limited GPU resources, which proves sufficient for 
training lightweight and medium-complexity CNNs. 
Our implementation utilizes several libraries 
including TensorFlow, OpenCV, Segmentation 
Models, and Albumentations. Data handling and 
training routines are scripted using Python 3, and 
key model checkpoints, logs, and results are saved to 
Google Drive. 

4.2. Data Set 

The initial dataset consists of 32 histology images 
manually annotated using the Roboflow web 
platform, which exports both the raw images and 
annotations in the widely adopted COCO format. 
The COCO (Common Objects in Context) format is a 
JSON-based annotation schema that provides 
structured representations for images, regions, and 
semantic classes. Each annotation includes 

• Images: metadata for each image, including 
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filename, width, height, and ID.  
• Annotations: region-wise object information, 

such as 
1. Image id: links the annotation to the 

corresponding image. 
2. Category id: integer representing the 

anatomical class. 
3. Segmentation: polygon coordinates outlining 

the annotated region. 
4. Iscrowd: flag indicating whether the region 

represents a crowd. 
• Categories: a mapping from category id to 

anatomical class names (e.g., gingiva, enamel, 
cementum). Illustrative Example. A simplified 
snippet of our COCO annotation file is shown 
below 

{ 
    "images": [ 
        { 
            "id": 1, 
            "file_name": "image_01.jpg", 
            "width": 320, 
            "height": 320 
        } 
    ], 
    "annotations": [ 
        { 
            "id": 1, 
            "image_id": 1, 
            "category_id": 5, 
            "segmentation": [[120, 80, 130, 90, 125, 100]], 
            "iscrowd": 0 
        } 
    ], 
    "categories": [ 
        { 
            "id": 5, 
            "name": "cementum" 
        } 
    ] 
} 

To facilitate model training, we convert these 
COCO polygon annotations into pixel-wise labeled 
masks, where each class is encoded as a unique 
integer value in a grayscale image. This rasterization 
is performed using a custom script that parses the 
COCO structure and generates dense masks.  

To enhance the dataset, we apply multiple rounds 
of augmentation. First, we use Roboflow’s free 
augmentation service, expanding the dataset to 128 
image-mask pairs. Then, we use the paid Roboflow 
plan, which generates an additional 896 augmented 
samples. To further increase diversity, we apply 
Albumentations and Detectron2-based on-the-fly 

transformations to the 128-image set, producing 20 
augmented versions per image, each with a 
corresponding mask, greatly improving model 
generalization. 

Each pixel in the mask represents a semantic class, 
making this a multiclass segmentation task. A total of 
59 anatomical structures are defined in the dataset; 
however, not every image contains all classes. To 
better specialize the models and improve 
segmentation accuracy, we train each model 
separately on specific subcategories. We split each 
subcategory dataset into 80% training and 20% 
validation. Due to severe class imbalance in most 
subcategories, we employ custom loss functions 
tailored to emphasize minority classes during 
training. 

4.3. Implementation 

In this section, we describe the implementation 
details of each architecture in our framework, 
including data pairing, loss design, CNN 
construction, and model-specific components. 

4.3.1. Image-Mask Pair Generation 

To prepare the data for supervised segmentation, 
we convert the COCO based polygon annotations 
into 2D masks, where each pixel’s intensity 
corresponds to a class index. These masks have the 
same resolution as their respective images and are 
saved using a consistent naming convention such 
that image.jpg corresponds to image mask.png. 

Each image-mask pair is then used to construct 
the training and validation datasets. The 
segmentation task is formulated as a dense pixel-
wise classification problem. During preprocessing, 
all images and masks are resized to a uniform 
resolution of 320 × 320 pixels. Image pixels are 
normalized to the range [0, 1], and masks are one-hot 
encoded to produce multi-channel label tensors 
compatible with models using softmax output layers. 
Data loading is handled through custom Python 
generators to support batch training and real-time 
feeding during model optimization. 

4.3.2. CNN Models 

We evaluate a diverse set of seven CNN-based 
models, each chosen to explore different 
segmentation strategies including encoder-decoder 
pipelines, attention-based token propagation, and 
region proposal mechanisms. All models are 
evaluated on the same dataset split using the same 
metrics. 

U-Net with EfficientNetB4 Backbone (Transfer 
Learning). In this experiment, we implement a U-Net 
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architecture integrated with a pretrained 
EfficientNetB4 encoder, leveraging transfer learning 
from ImageNet weights. The segmentation task 
involves multi-class mask prediction, where each 
pixel is assigned to a class representing an anatomical 
structure. The model is designed using the 
segmentation models library in TensorFlow, 
configured with an input shape of 320 × 320 × 3, a 
softmax activation in the output layer, and the 
number of output channels matching the number of 
detected classes in the dataset. 

To address severe class imbalance in the dataset, 
we implement a custom loss function combining 
Categorical Dice Loss (weighted 70%) and Focal 
Tversky Loss (weighted 30%), which effectively 
emphasizes learning from underrepresented classes. 
The model is compiled using the Adam optimizer 
with a reduced learning rate of 2e-4 to enhance 
convergence stability. During training, we use batch 
size=4 for 10 epochs, with dynamic per-image 
evaluation of the segmentation metrics. 

The training pipeline includes real-time data 
generators with on-thefly loading and resizing, and a 
comprehensive set of evaluation metrics, including 
mean IoU, Dice coefficient, pixel accuracy, and mAP 
at thresholds 0.5 and 0.75. We also employ model 
checkpointing, early stopping, CSV logging, and 
learning rate reduction strategies to monitor and 
improve performance across validation epochs. The 
final trained model is saved as a .keras file for future 
inference and evaluation. 

U-Net (Trained from Scratch): This baseline 
serves to assess performance without the influence of 
pretrained weights. We employ the classical UNet 
encoder-decoder structure with four downsampling 
and four upsampling blocks. Each convolutional 
layer is followed by batch normalization and ReLU 
activation. Unlike the transfer learning variant, this 
version is initialized with random weights using He 
normal initialization. The model is trained on the 
same preprocessed dataset using a categorical cross-
entropy loss function and the Adam optimizer with 
an initial learning rate of 1e-3. To stabilize training, 
we apply a learning rate scheduler that reduces the 
rate upon validation plateau. Evaluation metrics and 
training strategy mirror those of the EfficientNetB4 
backbone experiment to ensure a fair comparison.  

DeepLabV3+: This architecture utilizes atrous 
spatial pyramid pooling (ASPP) to capture multi-
scale contextual information, which is essential in 
histology images characterized by highly variable 
tissue morphology. Our implementation uses a 
DeepLabV3+ decoder attached to a ResNet50 
backbone pretrained on ImageNet. Training is 

performed using a batch size of 2 due to the increased 
memory footprint, with Dice loss as the primary 
objective. We adopt a polynomial learning rate decay 
policy starting at 1e-4, and training proceeds for 15 
epochs. Extensive validation shows that 
DeepLabV3+ achieves high mean IoU, particularly in 
cases of overlapping or irregularly shaped regions.  

Segment Anything Model (SAM): SAM is a 
transformer-based foundation model designed for 
general-purpose segmentation. Given its zero-shot 

capabilities, we evaluate SAM in two modes (1) 
prompt-based inference using bounding boxes or 
points, and (2) fine-tuned mode on our labeled 
histology dataset. For fine-tuning, we freeze the 
image encoder and only train the mask decoder using 
a pixel-wise binary cross-entropy loss adapted for 
multi-class outputs. Due to SAM’s architectural 
complexity, we use a limited subset of the data and 
apply heavy augmentation to simulate a larger 
training corpus. Early results show promising 
generalization even with minimal training. 

Mask R-CNN. Mask R-CNN extends Faster R-
CNN with a segmentation branch parallel to the 
object detection head. We adapt the model for 
instanceaware anatomical segmentation by 
customizing the anchor sizes and proposal regions to 
better suit histological features. Our implementation 
uses the Matterport Mask R-CNN library with a 
ResNet101-FPN backbone. Images are resized to 
512x512 for better granularity. The model is trained 
using a combination of classification loss, bounding 
box regression loss, and mask loss. Performance is 
evaluated using both class-wise and instance-level 
mAP, with best results observed on classes like 
dentin and enamel due to their distinct structural 
boundaries.  

YOLOv8: YOLOv8 is tested in segmentation 
mode, offering a lightweight and fast alternative for 
real-time inference. We use the Ultralytics 
implementation with custom dataset formatting. The 
model is trained for 20 epochs using a cosine learning 
rate schedule and automatic mixed precision (AMP) 
to speed up training. Segmentation outputs are post-
processed into masks for metric evaluation. Despite 
being designed primarily for object detection, 
YOLOv8 provides surprisingly competitive 
performance in pixel-wise accuracy on 
wellstructured tissue classes. MobileNet 
(Lightweight Architecture). This model explores the 
feasibility of segmentation on edge devices. We 
implement a U-Net variant using MobileNetV2 as the 
encoder. The model size is significantly reduced, 
with fewer trainable parameters and lower GPU 
memory requirements. 
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Training is performed with a batch size of 8 and 
categorical Dice loss. Despite its compactness, the 
model achieves reasonable Dice scores on larger 
structures like gingiva and pulp zones. This model is 
ideal for deployment in mobile histology learning 
apps where latency and efficiency are crucial. 

4.4. Results 

This section presents the experimental evaluation 
of multiple CNN-based segmentation models on oral 
histology images. The goal is to investigate the 
performance of various architectures when trained 
on specific anatomical subcategories, using multiple 
augmentation strategies. 

We evaluate seven models: U-Net, U-Net with 
EfficientNetB4 (Transfer Learning), DeepLabV3+, 
Mask R-CNN, Segment Anything Model (SAM), 
MobileNet, and YOLOv8. Each model is trained and 
evaluated on five different versions of the dataset 
generated through augmentation 

• Simple Augmented Images 
• Roboflow Augmented Images 
• Albumentations Augmented Images 
• Detectron2 Augmented Images 
• All Combined Augmentations 
• The evaluation is performed on 23 anatomical 

subcategories, listed below: 

• Tooth Development: tooth dev, root dev, 
apposition 

• Salivary Glands: mixed salivary gland 
• Pulp: pulp zones 
• Oral Mucosa: stratified squamous epithelium 

non-keratinized, lip, hard palate, gingiva, 
fungiform papillae, foliate papillae, 

circumvallate papilla, striae of retzius 
• Enamel: calcified structures in enamel and 

dentin, hunter schreger bands, enamel tufts, 
enamel spindles, enamel rods 

• Dentin: dentin types 1, dentin types 2, DEJ 
• Cementum and PDL: cementum, PDL 
Each subcategory undergoes a dedicated 

evaluation with all 7 models trained on each of the 5 
datasets, resulting in a total of 35 experiments per 
subcategory. The performance of each setup is 

measured using Intersection over Union (IoU), Dice 
Coefficient, Pixel Accuracy, and Mean Average 
Precision (mAP) at thresholds of 0.5 and 0.75. The 
results are reported in Sections 4.4.1 to 4.4.23, where 
each subsection focuses on one anatomical 
subcategory and summarizes the comparative 
performance across all models and augmentations. 

4.4.1. Tooth Development Subcategory 

In this subsection, we evaluate the performance of 
all seven CNN-based models trained specifically on 
the Tooth Development subcategory. The dataset 
includes images annotated for early developmental 
structures such as enamel organs and dental papillae. 
Each model is trained on two different versions of 
this dataset 

• Simple Augmented Images 
• All Combined Augmentation Sources 
The evaluation uses standard segmentation 

metrics: IoU, Dice Coefficient, Pixel Accuracy, 
mAP@0.5, and mAP@0.75. The results are 
summarized in Table 2, which compares the 
performance of all seven models across the five 
augmentation strategies. 

Table 2: Performance of 7 CNN Models on the Tooth Development Subcategory across 5. 
Model Dataset IoU Dice Pixel Accuracy mAP 0.5 mAP 0.75 

U-Net Simple 0.68 0.74 0.91 0.61 0.53 

 All Combined 0.78 0.84 0.96 0.72 0.65 

U-Net + EfficientNetB4 Simple 0.72 0.78 0.94 0.66 0.60 

 All Combined 0.76 0.82 0.98 0.70 0.64 

DeepLabV3+ Simple 0.70 0.76 0.92 0.60 0.54 

 All Combined 0.74 0.80 0.96 0.64 0.58 

Mask R-CNN Simple 0.64 0.70 0.89 0.58 0.50 

 All Combined 0.74 0.80 0.94 0.69 0.61 

SAM Simple 0.55 0.62 0.85 0.45 0.38 

 All Combined 0.59 0.66 0.89 0.49 0.42 

MobileNet Simple 0.65 0.72 0.89 0.55 0.48 

 All Combined 0.69 0.76 0.93 0.59 0.52 

YOLOv8 Simple 0.60 0.68 0.87 0.52 0.45 

 All Combined 0.64 0.72 0.91 0.56 0.49 

The results show that models trained on the 
combined augmentation dataset consistently 
outperform those trained on single-source 
augmentations. The U-Net with EfficientNetB4 

achieves the highest accuracy and generalization, 
indicating the benefit of transfer learning for small 
anatomical regions. DeepLabV3+ and traditional U-
Net also provide strong performance across all 
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augmentation types.  
In contrast, zero-shot models like SAM yield 

lower segmentation quality, especially on fine-
grained structures.  

4.5. Comparative Analysis with Existing 
Methods 

To evaluate the effectiveness of our approach for 
the Tooth Development subcategory, we compare 
our best-performing model with a previously 
published method by Alam et al. (2021), who 
proposed a CNN-based approach using a shallow 
encoder-decoder network for dental tissue 
segmentation in histological images, as shown in 
Table 3. 

Table 3: Comparison of Our Model with Alam et 
al. (2021) for Tooth Development. 

Model Dice Score (Ours) 
Dice Score (Alam et 

al.) 

U-Net + 
EfficientNetB4 

(Transfer Learning) 
0.82 0.74 

Discussion compared to the method introduced 
by Alam et al. (2021), which utilized a custom 
lightweight CNN for tooth region segmentation, our 
model U-Net with a pretrained EfficientNetB4 
encoder achieves a higher Dice score by 8 percentage 
points. This performance gain can be attributed to 
several factors 

• The use of a deep and pretrained backbone 
(EfficientNetB4) allows for richer hierarchical 
feature extraction. • Our data preprocessing 
includes one-hot encoded masks and 
consistent normalization, which enhances 
label precision.  

• We employ a composite loss function 
combining Dice and Focal Tversky losses, 
which better addresses class imbalance present 
in histological datasets. These results 
underscore the advantages of leveraging 
modern transfer learning techniques and 
hybrid loss formulations over custom shallow 
networks in the context of complex dental 
histology segmentation. 

5. CognidentHisto: Mobile App 

CognidentHisto is a cross-platform educational 
application developed using Flutter, designed to 
facilitate interactive engagement with oral histology 
image segmentation and assessment. It is available 
on both Android and iOS platforms, offering 
seamless accessibility for students and faculty alike. 
The application is backed by a robust Django 

backend and integrated with Swagger for API 
documentation and testing. The entire system is 
deployed on PythonAnywhere, ensuring scalability 
and reliability. The mobile app offers the following 
core features 

• Interactive Quiz Mode: Students are presented 
with annotated histology images and are 
tasked with naming highlighted anatomical 
subcategories. This reinforces learning 
through visual engagement and active recall. 

• Automated Scoring: Student responses are 
evaluated in real-time, and scores are 
displayed to provide immediate feedback. 

• Institutional Announcements: A centralized 
news feed allows faculty to post 
announcements, updates, and important 
notices related to coursework or assessments. 

• User Authentication: The system supports 
secure login functionality for students and 
role-based dashboards for faculty members. 

• Faculty Dashboard: Faculty can monitor 
student performance, track quiz scores, and 
access segmentation test results for each user 
as shown in Figure 3. 

The administrative dashboard is implemented as 
a web application built on the Django framework, 
providing faculty members with full access to user 
analytics, content management tools, and 
performance tracking modules. This web-based 
panel allows seamless oversight and coordination 
between mobile app usage and institutional 
academic goals.  

This application bridges the gap between deep 
learning model outputs and educational usability, 
making histological segmentation not only accessible 
but pedagogically valuable. Through its interactive 
features and practical deployment, CognidentHisto 
serves as a modern tool for anatomy education in 
dental programs. 

 
Figure 3: Django Admin Panel Interface for Faculty. 
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Figure 4: A Sample Segmentation Quiz - 

CognidentHisto Mobile App. 

6. CONCLUSION 

In this work, we introduced a comprehensive 
framework for oral histology image segmentation 
supported by a multi-model deep learning approach 
and a mobile educational application. The 
integration of custom dataset construction, extensive 
data augmentation, and subcategory-specific model 
training offers a scalable solution to the challenges of 
limited labeled data and complex tissue structures. 
The developed mobile application, CognidentHisto, 
demonstrates how deep learning technologies can be 
effectively translated into interactive educational 
tools. While the full scope of performance evaluation 
and user feedback is ongoing, this initial framework 
lays a strong foundation for enhancing histology 
learning and diagnostic support. Future work will 
aim to expand dataset diversity, refine model 
accuracy, and incorporate more advanced learning 
features in the application. 
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