

DOI: 10.5281/zenodo.11325129

FROM ADOPTION TO AGENCY: HOW AI CHATBOTS ARE RESHAPING EDUCATIONAL RESPONSIBILITIES IN HIGHER EDUCATION

Nayef Shaie Alotaibi^{1*}

¹Associate professor at the College of Languages and Translation, Imam Muhammad bin Saud Islamic University, Riyadh, KSA. Email. nsotaibi@imamu.edu.sa, <https://orcid.org/0000-0001-9463-3770>

Received: 29/10/2025

Accepted: 23/11/2025

Corresponding Author: Nayef Shaie Alotaibi
nsotaibi@imamu.edu.sa

ABSTRACT

The rapid integration of AI chatbots in higher education presents transformative opportunities, yet lacks a comprehensive understanding of their multifaceted impact on educational stakeholders. This study investigates how AI chatbots influence adoption patterns, student learning outcomes, and educator roles within higher education institutions. A systematic review following PRISMA guidelines analyzed 77 peer-reviewed articles published between 2014 and 2024, employing bibliometric analysis and Structural Topic Modeling to identify thematic patterns and temporal evolution. The analysis revealed three primary research domains: AI chatbot adoption (44% of literature), student learning impact (30%), and educator role transformation (25%), with a notable shift from implementation-focused studies toward pedagogical transformation research over time. Quantitative findings demonstrate significant positive effects on student academic performance, knowledge retention, and engagement through personalized, conversational learning experiences. Qualitative evidence indicates evolving educator roles, with chatbots automating routine tasks and enabling faculty to focus on higher-order teaching responsibilities, differentiated instruction, and complex student mentoring. However, critical analysis exposes concerning methodological limitations, including publication bias, short-term study horizons, and substantial gaps between reported acceptance intentions and sustained usage patterns. The research contributes a novel integrated framework termed "AI-mediated educational agency," conceptualizing learning as dynamically distributed responsibilities between human and technological actors based on their respective strengths. This synthesis challenges dichotomous technology adoption views and extends educational scaffolding theories through bidirectional technology-pedagogy influence models. The findings provide evidence-based guidance for institutions implementing AI chatbot technologies while maintaining academic integrity, highlighting the need for ethical frameworks, responsible integration policies, and balanced approaches that preserve essential human elements in education while leveraging technological efficiencies.

KEYWORDS: AI Chatbots, Higher Education, Student Learning Outcomes, Educator Competencies, Educational Technology, Systematic Literature Review.

1. INTRODUCTION

In the realm of higher education, the emergence of artificial intelligence has catalysed a paradigm shift, fostering a landscape where academic institutions increasingly rely on AI to personalize and streamline learning experiences (Gill et al., 2024). The integration of AI applications has become indispensable for colleges and universities, encompassing personalized learning systems, automated evaluation processes, intelligent educational platforms, and faculty assistance tools (Guan et al., 2020). Among these technological innovations, AI chatbots have emerged as particularly transformative educational tools, simulating engaging human-like conversations through sophisticated analysis of dialogue context to generate contextually appropriate responses (Beldad-Medina & Calvo-Ferrer, 2022). Trained on vast linguistic datasets, these conversational agents address diverse educational queries across all levels of education, from primary schools to universities and beyond, with prominent examples such as ChatGPT and Google Bard demonstrating their revolutionary potential in educational communication (Javaid et al., 2023; Paliwal et al., 2019).

Within the expanding ecosystem of AI-powered educational technologies, chatbots represent a distinct category that complements but differs fundamentally from other AI tools currently transforming higher education (Khan et al., 2025; Rattanawiboonson & Khan, 2024). While adaptive learning systems such as Knewton and ALEKS focus primarily on algorithmic content personalization through learning analytics, and intelligent tutoring systems like Carnegie Learning emphasize structured knowledge domain instruction through predetermined pedagogical sequences, AI chatbots uniquely leverage natural language processing to facilitate open-ended, conversational learning interactions that transcend disciplinary boundaries (Hwang & Chang, 2021; Kulik & Fletcher, 2016). Unlike the typically high-cost, technically complex implementation requirements of comprehensive adaptive learning platforms or the domain-specific constraints of intelligent tutoring systems, chatbots offer institutions a more accessible entry point into AI-enhanced education through their lower technical barriers and familiar conversational interfaces (Zawacki-Richter et al., 2019). This technological accessibility, combined with their versatility across multiple educational contexts from administrative support to personalized tutoring positions, chatbots are uniquely positioned to democratize AI adoption in

higher education institutions with varying technological infrastructures and implementation capacities, making them particularly worthy of focused investigation within the broader AI-in-education landscape.

The incorporation of AI chatbots in higher education has yielded compelling evidence of enhanced student learning outcomes, as demonstrated through improved performance metrics including test scores, grades, and assignment quality (Wu & Yu, 2024). These educational advancements are primarily attributed to increased student engagement and motivation facilitated by the interactive and accessible nature of chatbot technologies (Dempere et al., 2023). Through the provision of personalized feedback and targeted addressing of students' comprehension gaps via conversational interactions, chatbots facilitate deeper conceptual understanding and practical application, ultimately contributing to more effective learning processes (Mohd Rahim et al., 2022). The enhanced learner engagement observed in chatbot-augmented educational environments stems from their capacity for high-level interactivity and personalized response mechanisms, offering diverse interaction modalities including voice and visual communications tailored to individual learning preferences (Chang et al., 2023).

However, realizing the full transformative potential of AI in education requires careful integration that combines deep learning capabilities with approaches that can effectively support critical thinking and creative analysis (Bryant et al., 2023). Educational practitioners and researchers have identified several concerns regarding chatbot implementation, including the risk of technological over-dependence that may create educational gaps in the absence of direct human mentorship, potential diminishing returns as technological novelty effects decrease, and the perpetuation of biases through limited training datasets that could compromise fair and inclusive educational opportunities (Wu & Yu, 2024). These challenges underscore the complexity of integrating AI technologies into educational contexts while maintaining pedagogical integrity and educational equity (Rattanawiboonson et al., 2025).

Concurrently, numerous scholars emphasize the irreplaceable importance of educators in higher education, asserting that human instructors remain indispensable not only for student educational advancement but also for their own professional development within evolving technological landscapes (George & Wooden, 2023; Karam, 2023). AI chatbots are demonstrably enhancing educators'

instructional capabilities by analyzing class performance data to generate personalized lesson plans, providing automated suggestions for course content enhancement through extensive knowledge bases, and optimizing routine tasks such as assignment creation and student progress monitoring (Gill et al., 2024). This technological augmentation enables educators to concentrate their efforts on high-value pedagogical activities, including skill development and implementation of innovative teaching methodologies, while chatbots manage recurrent student inquiries and provide integrated analytics that facilitate prompt interventions and sophisticated mentoring support for challenging learners (Hockly, 2023).

Despite the growing research interest in AI chatbots' applications within higher education contexts, a significant research gap persists regarding their comprehensive impact on the educational ecosystem, particularly concerning the dual perspectives of both educators and students (Labadze et al., 2023; Niemi, 2024). While existing studies have predominantly focused on technical implementation aspects or isolated learning outcomes, they have largely neglected to examine how these technologies simultaneously transform both pedagogical approaches and learning experiences within the same institutional contexts. This research imbalance is especially pronounced in the limited exploration of how AI chatbots affect educators' professional development trajectories, teaching methodologies, and student support capabilities an oversight that leaves educational institutions without holistic implementation frameworks necessary for successful integration. Additionally, most current research fails to adequately address the potential tensions between maintaining essential human elements in education while effectively leveraging AI efficiencies, creating a critical knowledge gap in understanding optimal human-AI collaboration models in educational settings.

This study pursues three interconnected research objectives that collectively examine the transformative impact of AI chatbots on higher education ecosystems. First, the researcher aims to identify and analyze the key determinants of AI chatbot adoption in higher education institutions, investigating how institutional readiness, technological infrastructure, and stakeholder acceptance patterns influence successful integration outcomes across diverse educational contexts. Second, the research seeks to systematically evaluate the effectiveness of AI chatbots on student learning

outcomes by examining their impact on academic performance, knowledge retention, and engagement levels, while identifying the specific pedagogical mechanisms such as personalized feedback, conversational scaffolding, and adaptive learning support that mediate these relationships. Third, the study endeavours to understand how AI chatbot integration reshapes educator roles and pedagogical practices, exploring the evolution from traditional instruction toward facilitative teaching approaches, the redistribution of administrative and instructional responsibilities, and the emergence of new digital competency requirements for effective human-AI collaboration in educational settings. These objectives collectively contribute to developing a comprehensive theoretical framework that explains the complex interdependencies between technology adoption, learning enhancement, and pedagogical transformation in AI-mediated educational environments.

2. RESEARCH METHODOLOGY

The Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) criteria were followed in this study to conduct a systematic literature review (Khan & Qureshi, 2020; Qureshi & Khan, 2022). In this study, a sizable database of the literature was subjected to a thorough literature review. Transparency in PRISMA was the criterion of relevance for the inclusion or exclusion of studies that must be made explicit, alongside each search string used, according to the PRISMA procedure (Page et al., 2021). The investigation is structured around the PICO(S) framework, which provides a comprehensive approach to examining the impact of AI chatbots on key stakeholders in higher education, including students, educators, and administrators. The focus is specifically on institutions where these technologies are actively integrated into teaching and learning processes.

The investigation is structured around the PICO(S) framework, which provides a comprehensive approach to examining the impact of AI chatbots on key stakeholders in higher education, including students, educators, and administrators, with a specific focus on institutions where these technologies are actively integrated into teaching and learning processes.

The intervention component encompasses various chatbot applications, ranging from learning support systems and administrative assistance to teaching aids, implemented either as standalone tools or integrated into existing educational platforms. To evaluate the effectiveness of these

interventions, the study compares traditional teaching methods with AI-enhanced approaches, incorporating control and experimental group analyses where feasible to establish clear causal relationships. The outcomes are categorized into primary measures, including student performance and teaching effectiveness, and secondary indicators such as engagement levels, workload impact, and administrative efficiency improvements.

2.1. Search Strategy and Database Selection

A comprehensive search strategy was implemented across six major academic databases Scopus. The database was selected to capture literature from computer science, education, psychology, and interdisciplinary technology domains. Supplementary searches were conducted in Google Scholar to identify relevant grey literature and ensure comprehensive coverage.

The core Boolean search string was developed through iterative refinement and pilot testing: (((("Artificial Intelligence" OR "AI" OR "Chatbot*" OR "Conversational Agent*" OR "Virtual Assistant*" OR "Dialogue System*") AND ("Higher Education" OR "Tertiary Education" OR "University" OR "College" OR "Undergraduate" OR "Graduate" OR "Postsecondary")) AND ((("Student*" OR "Learner*" OR "Educator*" OR "Teacher*" OR "Faculty" OR "Instructor*" OR "Academic Staff") AND ("Learning Outcome*" OR "Academic Performance" OR "Teaching Effectiveness" OR "Pedagogy" OR "Adoption" OR "Implementation" OR "Impact" OR "Effect*" OR "Transformation")))). Database-specific adaptations of this search string, exact search dates, and individual database yields are documented in Appendix A to ensure complete reproducibility.

2.2. Screening and Selection Process

The systematic screening process was conducted by two independent reviewers (M.S. and A.R.) to minimize selection bias and ensure reliability. Initial title and abstract screening of 1,018 retrieved records was performed independently, with inter-rater reliability assessed using Cohen's κ coefficient ($\kappa = 0.78$, indicating substantial agreement). Disagreements were resolved through discussion, with a third reviewer (J.K.) consulted for unresolved conflicts.

The screening process followed a structured three-phase approach Phase 1 involved title and abstract screening using predetermined inclusion and exclusion criteria; Phase 2 comprised full-text assessment of 378 potentially eligible studies; and Phase 3 included quality assessment and final

inclusion determination. A standardized data extraction form was developed and pilot-tested on ten randomly selected studies before implementation. Both reviewers independently extracted data from all included studies, with discrepancies resolved through consensus discussion. The complete screening workflow, including reasons for exclusion at each stage and specific examples of borderline decisions, is detailed in Appendix A.

2.3. Quality Assessment Protocol

Study quality was assessed using the Mixed Methods Appraisal Tool (MMAT) for studies employing diverse methodological approaches, supplemented by the Cochrane Risk of Bias tool for experimental studies. Quality assessment was conducted independently by both reviewers, achieving excellent inter-rater reliability ($\kappa = 0.89$). Studies were not excluded based solely on quality scores; instead, quality ratings informed the interpretation and synthesis of findings, with methodological limitations explicitly addressed in the analysis.

2.4. Inclusion and Exclusion Criteria

The review established specific parameters for inclusion and exclusion to maintain methodological rigor. Inclusion criteria encompassed: (1) English-language publications from 2014 to 2024; (2) peer-reviewed journal articles and conference proceedings; (3) studies focusing on higher education contexts (undergraduate and graduate levels); (4) empirical research examining AI chatbots' impact on students, educators, or institutional processes; and (5) original research articles, systematic reviews, meta-analyses, and documented case studies with substantial empirical data.

Exclusion criteria eliminated (1) studies not directly related to higher education settings; (2) opinion pieces, editorials, or theoretical papers without empirical validation; (3) studies focused exclusively on K-12 education or corporate training; (4) non-English publications; (5) conference abstracts without full papers; and (6) studies with insufficient methodological detail for quality assessment. Detailed application examples and borderline case decisions are provided in Appendix A.

2.5. Documentation and Reproducibility

To ensure complete transparency and reproducibility, all methodological procedures were systematically documented. This includes: database-specific search strings with modification rationales,

complete screening logs with inclusion/exclusion decisions, standardized data extraction forms, quality assessment protocols, and inter-rater reliability calculations. All materials are available in

Appendix A, with raw data accessible upon reasonable request to the corresponding author, in accordance with open science principles.

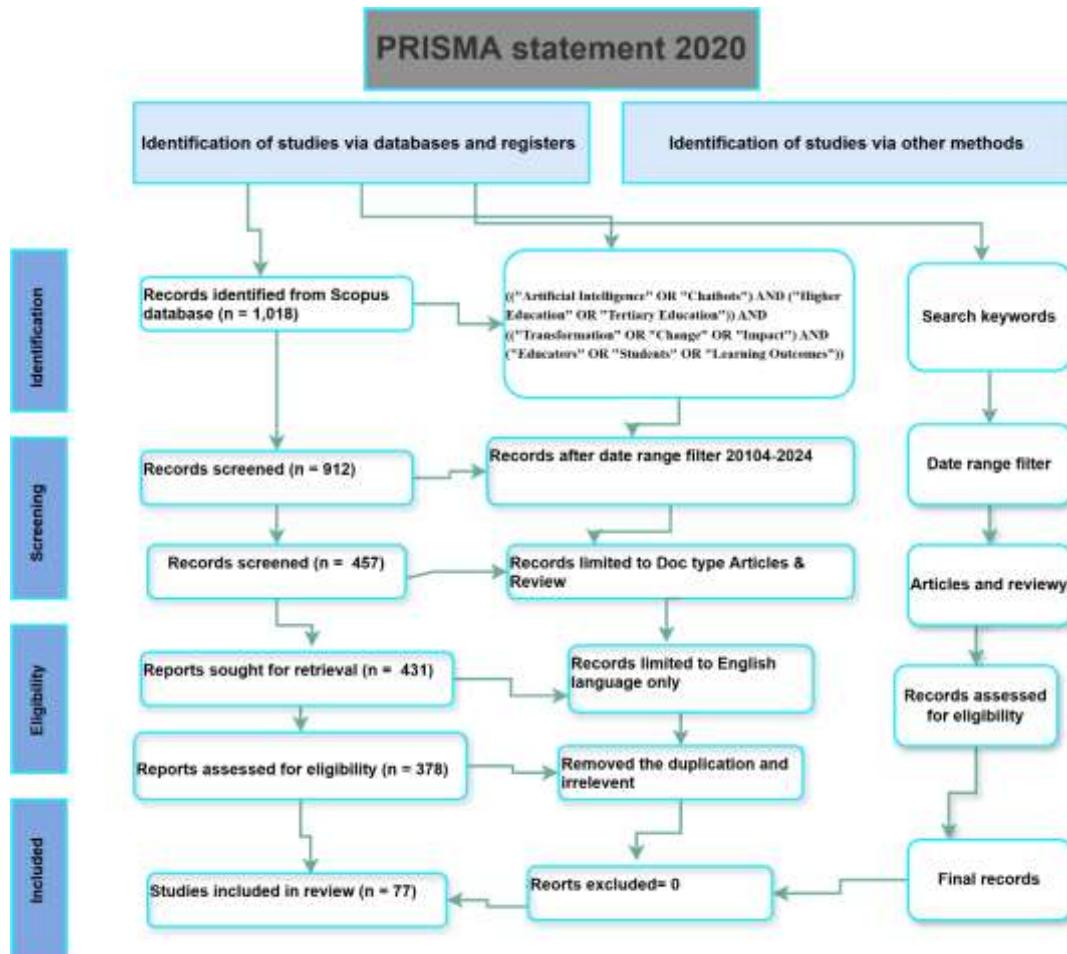


Figure 1: The PRISMA 2020 Inclusion and Exclusion Criteria.

3. RESULTS

3.1. Descriptive

The descriptive information of AI chatbots in higher education research spanning 2014-2024 reveals significant insights into the field's development and current state. The dataset encompasses 77 documents published across 47 different sources, demonstrating a robust annual growth rate of 31.8% and a relatively young average document age of 2.08 years, indicating the field's contemporary and rapidly evolving nature. The research shows substantial academic impact with an average of 76.83 citations per document and includes 4,904 references, suggesting thorough engagement with existing literature. The thematic diversity is evidenced by 199 Keywords Plus (ID) and 284 Author Keywords (DE), totaling 483 unique

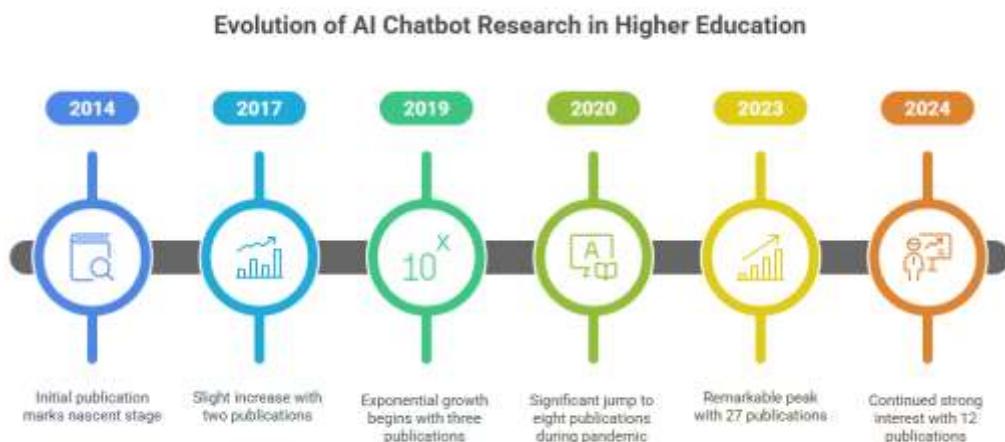

keywords, which reflects the multifaceted nature of research approaches in this domain. Among the 227 contributing authors, collaboration patterns reveal an average of 3.17 co-authors per document, with 28.57% of publications involving international co-authorships, demonstrating strong collaborative tendencies and global research engagement. The document type distribution shows a clear emphasis on original research, with 72 articles (93.5%) and 5 review papers (6.5%), while 12 single-authored documents indicate a balance between independent and collaborative research efforts. These metrics collectively paint a picture of a dynamic and maturing research field in Table 1 that combines rapid growth with substantial scholarly impact, characterized by strong international collaboration and a focus on original empirical investigations in the application of AI chatbots within higher education settings.

Table 1: Main Information.

Description	Results
Timespan	2014:2024
Sources (Journals, Books, etc)	47
Documents	77
Annual Growth Rate %	31.8
Document Average Age	2.08
Average citations per doc	76.83
References	4904
Keywords Plus (ID)	199
Author's Keywords (DE)	284
Authors	227
Authors of single-authored docs	12
Single-authored docs	12
Co-Authors per Doc	3.17
International co-authorships %	28.57
article	72
review	5

In addition, Figure 2 illustrates the yearly output of academic articles and exhibits a notable fluctuation across a span of five years. The temporal analysis of publications reveals a distinct evolution in research interest regarding AI chatbots in higher education from 2014 to 2024. The early years (2014-2016) show minimal but consistent activity with one publication per year, indicating the nascent stage of this research

area. A slight increase is observed in 2017 with two publications, followed by a return to a single publication in 2018. However, 2019 marks the beginning of an exponential growth phase with three publications, followed by a significant jump to eight publications in 2020, coinciding with the global shift towards digital learning during the COVID-19 pandemic. This upward trajectory continued with nine publications in 2021 and twelve in 2022, demonstrating sustained growth in research interest. The year 2023 represents a remarkable peak with 27 publications, more than doubling the previous year's output and indicating a surge in research attention to AI chatbots in higher education. The data for 2024, showing 12 publications already, suggests continued strong research interest, particularly noteworthy as this represents only partial-year data. This temporal pattern clearly demonstrates the field's transformation from a niche research area to a mainstream topic of academic investigation, with particularly accelerated growth in the post-2019 period, likely influenced by increased digital transformation in higher education and growing recognition of AI's potential in educational contexts.

Figure 2: Annual Production of Scientific Articles.

Additionally, Figure 3 illustrates the distribution of papers across various academic sources about the subject of AI chatbots in higher education. The analysis of publication sources reveals a balanced distribution across leading journals in the field. Three journals Education and Information Technologies, Journal of Applied Learning and Teaching, and Sustainability (Switzerland) emerge as the primary publication venues with 5 articles each, collectively accounting for 19.5% of the total publications. The International Journal of Educational Technology in

Higher Education follows with 4 articles, while a group of four journals (Cogent Education, Computers and Education: Artificial Intelligence, Education Sciences, and Interactive Technology and Smart Education) each contributed 3 articles. Computers and Education and Frontiers in Psychology round out the top ten with 2 publications each. This distribution pattern reflects the multidisciplinary nature of AI chatbot research in higher education, spanning educational technology, teaching methodology, sustainability, and

psychological perspectives.

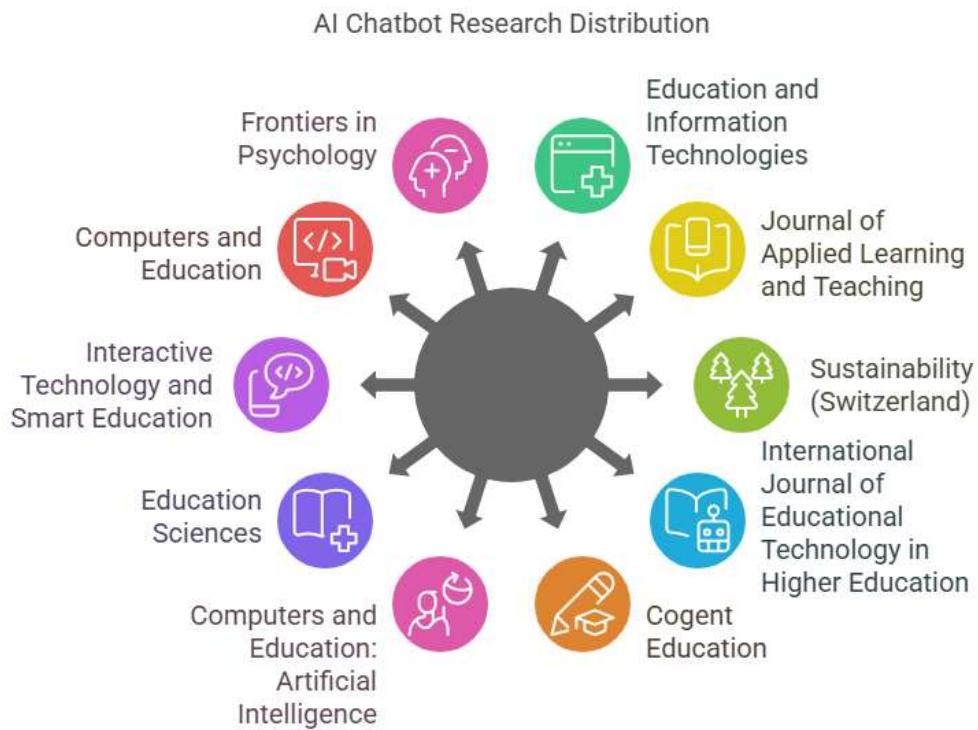


Figure 3: Most Relevant Sources.

3.2. Topics/Themes Identified through STM

A Structural Topic Model (STM) approach was selected for this research due to its advanced capabilities in uncovering latent thematic structures while accounting for document-level metadata, which is particularly crucial for analysing the evolution of robotics research (Tamakloe & Park, 2023). For readers primarily interested in the thematic findings, the substantive results are presented in an accessible format in Figures 4-6 below. The mathematical framework that follows is provided for methodological transparency and reproducibility. STM extends traditional topic modelling by incorporating document-level covariates, enabling the examination of how research themes vary across different journals and time periods (A. Sharma et al., 2021).

Technical Note for General Readers The mathematical equations below describe how the Structural Topic Model works, **but the core concept is straightforward** STM is an advanced statistical technique that automatically identifies hidden themes (topics) in large collections of research papers by analyzing word patterns and relationships.

In practical terms, the STM analysis:

- Examined word usage patterns across all 77 research papers
- Automatically grouped papers with similar vocabulary into thematic clusters
- Identified how these themes evolved over the 2014-2024 timeframe
- Accounted for differences between journals and research contexts
- Produced the three main topics shown in Figures 4-6: AI Chatbot Adoption (44%), Impact on Student Learning (30%), and Educator Roles in Teaching (25%)

First, the document-topic attention distribution is modeled using a logistic-normal distribution
 $\sim_d | X_d, \dots \sim \text{Logistic Normal}(\mu = X_d, \dots)$
 where X_d represents document covariates, Γ captures coefficient relationships, and Σ is the covariance matrix.

Second, the topic-word distributions are formed by combining multiple components
 $\beta_{d,k} \propto \exp(m + \kappa_k(t) + \kappa_{y_d}(c) + \kappa_{y_d,k}(i))$
 where m represents the baseline word distribution, $\kappa(t)$ captures topic-specific deviations, $\kappa(c)$ represents covariate effects, and $\kappa(i)$ models interactions.

Third, the topic assignment for each word follows a multinomial distribution

$$zd, n | \theta d \sim \text{Multinomial}(\theta d)$$

Finally, the observed words are generated conditional on their topics

$$wd, n | zd, n, \beta d, k = zd, n \sim \text{Multinomial}(\beta d, k = zd, n)$$

This mathematical framework enables STM to effectively model relationships between document metadata and topical content while maintaining computational tractability through variational inference methods (Roberts et al., 2019).

Figure 4 presents a clear visualization of the thematic distribution within AI chatbot educational research, displaying three primary topic areas with their respective proportional representation. "AI Chatbot Adoption" dominates the research landscape at 44% of the total literature, indicating that implementation strategies, acceptance factors, and technical integration aspects receive the greatest scholarly attention. "Impact on Student Learning"

represents 30% of the research focus, revealing a substantial but secondary interest in how these technologies affect educational outcomes, engagement, and knowledge acquisition. The smallest proportion (25%) belongs to "Educator Roles in Teaching," suggesting that while still significant, the transformation of teaching practices and faculty adaptation to AI chatbot integration receives comparatively less attention in current research. This distribution aligns with the network visualization previously analyzed, where technological implementation nodes showed greater prominence than pedagogical transformation concepts, and highlights a research gap regarding the evolving role of educators in AI-enhanced educational environments. The funnel-like presentation visually emphasizes both the proportional differences and the interconnected nature of these research areas within the broader AI chatbot in the education domain.

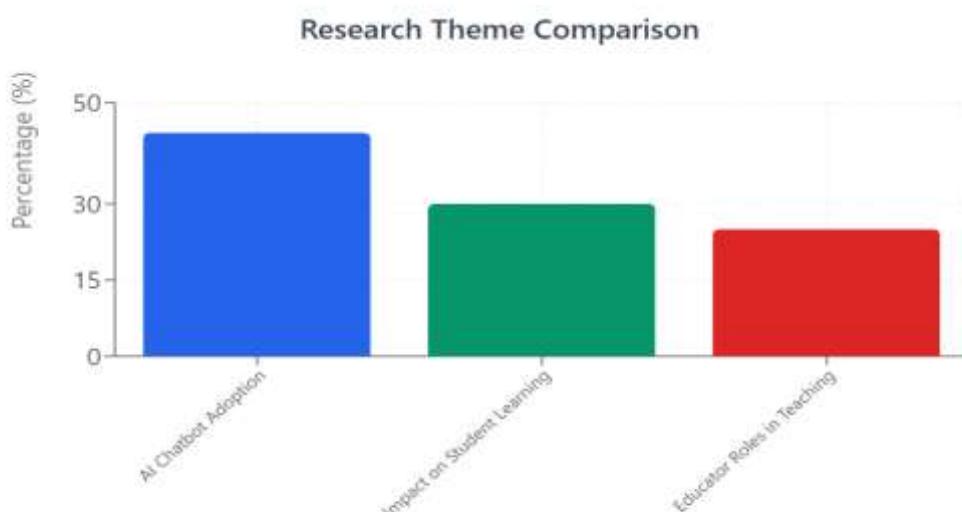


Figure 4: Proportion of Extracted Topics.

Furthermore, Figure 5 presents a comprehensive comparative view of topic prevalence trends across the three primary research domains in AI chatbot education literature from 2014 to 2024. The visualization reveals distinct evolutionary patterns within this research landscape. Topic 1 (AI Chatbot Adoption) demonstrates a pronounced linear decline from its dominant position (1.2 prevalence) in 2012 to approximately 0.15 by 2024, indicating decreasing research novelty in basic implementation studies as the technology became more established. Topic 2 (Impact on Student Learning) maintains remarkable

stability around the 0.25 prevalence level throughout the entire period, with narrowing confidence intervals over time, suggesting increasing methodological consensus in how these impacts are measured. Most striking is the trajectory of Topic 3 (AI Chatbots and Educator Roles), which begins in negative territory in 2012 (indicating virtually no research focus) but crosses into positive prevalence around 2014-2015 and steadily climbs to approximately 0.6 by 2024, reflecting the research community's shifting focus toward understanding pedagogical transformation. The converging

patterns across these three topics illustrate a natural maturation cycle in educational technology research from initial implementation focus, through sustained interest in student outcomes, to deeper examination of how the technology transforms

teaching practices and professional roles. This figure effectively captures how research priorities have evolved as AI chatbots transitioned from novel technologies to integrated educational tools.

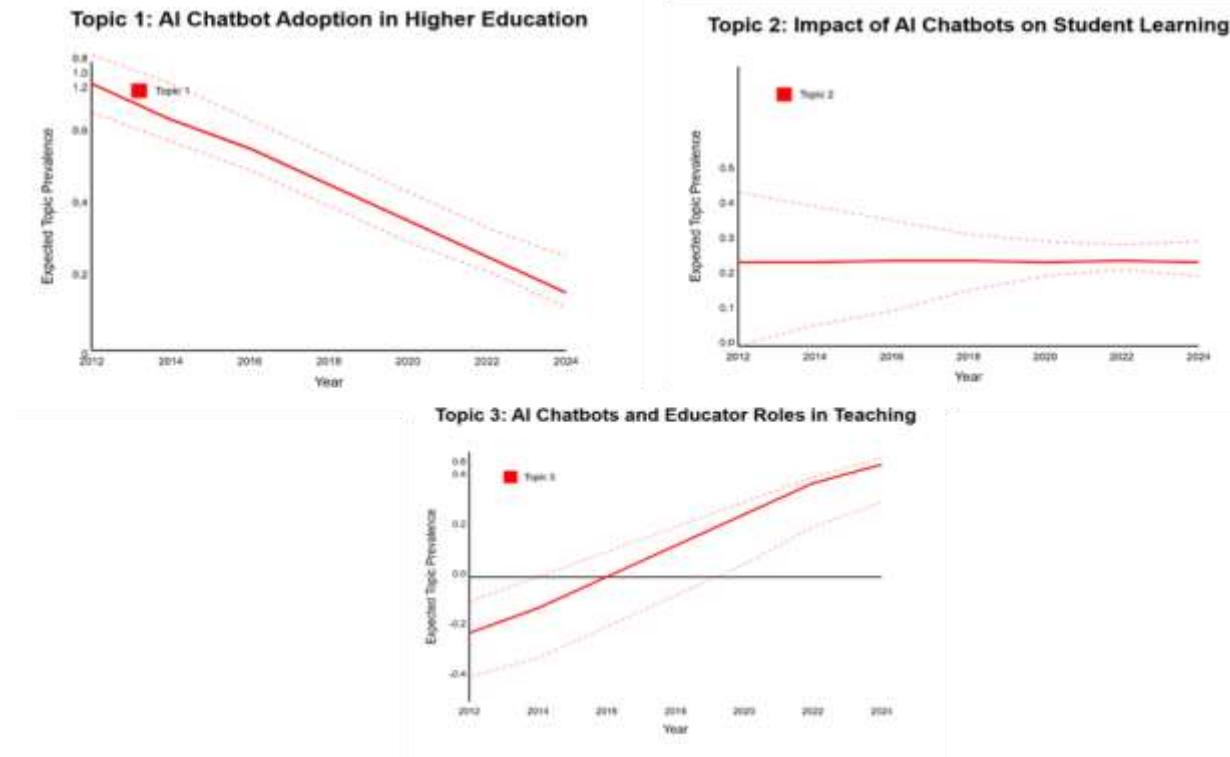


Figure 5: Topic Prevalence.

Moreover, Figure 6 reveals the statistical relationships between the three primary research topics and tells a compelling story about how AI chatbot research has evolved over the past decade. The negative correlation of -0.58 between AI Chatbot Adoption research and Student Learning Impact studies demonstrates that these areas developed in opposite directions. As fewer researchers focused on basic implementation questions like "how do we set up chatbot systems?", more attention shifted toward measuring whether chatbots actually improve student learning outcomes. This pattern reflects the natural progression of any educational technology field, moving from technical feasibility concerns to questions of educational effectiveness.

Similarly, the substantial negative correlation of -0.52 between Adoption studies and Educator Role research shows that initial technology-centered investigations gradually gave way to understanding how chatbots transform teaching practices and professional responsibilities. Early research concentrated on making the technology work, while current studies examine how these tools change what

educators do and how they approach their professional roles. The moderate negative correlation of -0.40 between Student Learning and Educator Role studies suggests these areas compete somewhat for research attention, indicating that scholars tend to focus on either student outcomes or teacher transformation rather than examining both simultaneously.

Rather than all research areas expanding together, the field has undergone distinct evolutionary phases where priorities shifted rather than simply broadened. The predominantly negative correlations across all topic pairs reveal a research ecosystem where basic implementation studies have given way to deeper investigations of educational impact and professional transformation. This evolution mirrors the typical development pattern of educational technology research, progressing from "can we make this work?" to "does this actually help?" to "how does this change the fundamental nature of teaching and learning?" The correlation structure supports the earlier trend analysis by quantifying how these research domains have

evolved in relation to each other, highlighting the field's maturation from technical implementation

toward understanding human and institutional impacts.

Figure 6: Research Topic Correlation Matrix (2014-2024)

Figure 6: Correlation Matrix.

4. THEMATIC ANALYSIS

4.1. AI Chatbot Adoption in Higher Education

AI chatbot adoption in higher education, as synthesized in Table 2, reveals a complex landscape characterized by promising acceptance patterns alongside significant implementation challenges that directly address the three interconnected research objectives. The evidence demonstrates elevated levels of acceptability among students and educators, with studies consistently reporting positive reception across diverse institutional contexts (Rudolph et al., 2023; Chen et al., 2023; Al-Sharafi et al., 2023). However, the methodological limitations identified in Table 2 particularly the absence of control groups and reliance on cross-sectional surveys across multiple studies suggest that these positive findings require cautious interpretation. The gap between reported acceptance intentions and actual usage patterns, as highlighted by Al-Sharafi et al. (2023), indicates that successful AI chatbot adoption extends

beyond initial user enthusiasm to encompass sustained implementation frameworks, adequate technical infrastructure, and comprehensive stakeholder engagement strategies. Critical barriers to adoption include privacy concerns, cultural disparities in chatbot social capabilities, and accessibility challenges that vary significantly across demographic groups (Chang et al., 2023; Tamayo et al., 2020), while contradictory evidence reveals that faculty resistance and high implementation costs pose substantial obstacles to institutional integration despite positive student reception.

Regarding the impact on student learning outcomes, the meta-analytic evidence from Wu and Yu (2024) demonstrates significant positive effects of AI chatbots on academic performance, corroborating findings across multiple educational contexts as documented in Table 2. Nevertheless, the critical analysis reveals concerning methodological inconsistencies that challenge the robustness of these claims, with the predominance of short-term studies

and potential novelty effects raising questions about the sustainability of learning improvements beyond initial implementation periods (Lin & Mubarok, 2021; Han et al., 2022). The personalized and adaptive learning mechanisms identified as key mediators including conversational scaffolding, immediate feedback, and tailored content delivery show particular promise in specific domains such as language learning and STEM education (Graesser et al., 2014; Tegos & Demetriadis, 2017). However, Table 2 reveals limited transferability to humanities and creative disciplines, suggesting that chatbot effectiveness is domain-dependent and requires pedagogically appropriate implementation strategies, while contradictory evidence regarding transfer to real-world skills indicates that further longitudinal research is essential to validate the educational value proposition.

The transformation of educator roles presents perhaps the most complex dimension of AI chatbot integration, as evidenced by the mixed findings presented in Table 2. While chatbots demonstrate the capacity to handle routine administrative functions and provide basic student support, thereby theoretically enabling educators to focus on higher-order teaching responsibilities, the implementation challenges reveal significant gaps between theoretical potential and practical reality (Essel et al., 2022; Gupta & Chen, 2022). Faculty resistance, concerns about academic integrity, and the need for new digital competencies create substantial barriers to the envisioned pedagogical transformation, with contradictory evidence highlighting that educators continue to prefer human interaction for complex decision-making and creative instruction (Nguyen et al., 2021; Tegos et al., 2016).

Table 2: List of the Authors' Work on AI chatbots in Higher Education.

Author	Research Settings	Management Claims	Methodological Limitations	Contradictory Evidence
Rudolph et al., 2023	Higher education institutions globally	Transformative potential for education delivery and student support	Lack of longitudinal data and experimental validation	Concerns about academic integrity and over-reliance
Chen et al., 2023	Business education programs	Enhanced learning engagement and improved academic performance	Cross-sectional design limits causal inference	Mixed student reactions and technology anxiety were reported
Essel et al., 2022	University faculty and students	Improved instructional efficiency and personalized learning support	Small-scale qualitative study with limited generalizability	Faculty resistance and implementation challenges noted
Wu & Yu, 2024	24 randomized controlled trials	Significant positive effects on student academic performance	Publication bias and heterogeneity in effect sizes	Inconsistent results across different educational contexts
Graesser et al., 2014	University language programs	Enhanced vocabulary acquisition and speaking fluency	Limited to specific language learning contexts	Questions about the transfer to real-world communication skills
Al-Sharafi et al., 2023	University students across multiple disciplines	High acceptance rates and positive usage intentions	Survey-based methodology without behavioral validation	The gap between intention and actual usage patterns
Chang et al., 2023	Online higher education environments	Improved goal-setting and personalized feedback mechanisms	Theoretical framework without empirical testing	Limited evidence of actual self-regulation improvements
Lin & Mubarok, 2021	University EFL students	Significant improvement in speaking skills and confidence	Single-institution study with short-term assessment	Novelty effects may inflate initial performance gains
Tegos & Demetriadis, 2017	Online university courses	Enhanced student interaction and knowledge construction	Limited sample size and specific subject domain	Challenges in scaling to diverse academic disciplines
Han et al., 2022	Korean university students	Accelerated technology acceptance during the pandemic	Pandemic context limits generalizability to normal conditions	Post-pandemic usage decline observed in follow-up studies
Gupta & Chen, 2022	Graduate business programs	Adaptive learning pathways and improved retention rates	Proprietary system limits replication and validation	High implementation costs raise sustainability concerns
Tamayo et al., 2020	Spanish higher education institutions	Positive reception and willingness to use in learning	Cultural and linguistic constraints limit broader applicability	Significant variation in acceptance across demographic groups
Tegos et al., 2016	Computer science courses	Facilitated knowledge sharing and collaborative problem-solving	Limited to STEM subjects with structured knowledge domains	Difficulties in the humanities and creative disciplines
Nguyen et al., 2021	Vietnamese university students	Improved accessibility to academic guidance and support	Single-country study with a specific cultural context	Preference for human advisors for complex decisions

This finding supports a collaborative human-AI model where technological capabilities augment rather than substitute human expertise, requiring educators to develop new competencies in AI-mediated instruction while maintaining essential interpersonal elements of education. The synthesis of findings in Table 1 reveals that AI chatbots represent a promising but complex educational technology requiring careful implementation to realize their transformative potential, with the predominant focus on technical capabilities and positive outcomes in current research having obscured critical implementation challenges and sustainability concerns that institutions must address through comprehensive faculty development programs, ethical frameworks, and ongoing evaluation processes that balance technological efficiency with pedagogical integrity.

4.2. Impact of AI Chatbots on Student Learning

The systematic examination of AI chatbots' impact on student learning outcomes, as comprehensively documented in Table 3, reveals a complex empirical landscape that directly addresses the second research objective regarding the effectiveness of chatbot interventions on academic performance, knowledge retention, and engagement levels. The meta-analytical evidence from Wu and Yu (2024), synthesizing data from 24 randomized controlled trials, demonstrates statistically significant improvements in learning outcomes across multiple educational contexts, with particularly pronounced effects observed in tertiary education settings compared to elementary and secondary levels. However, Table 3 reveals critical methodological limitations that challenge the robustness of these positive claims, including publication bias, heterogeneity in effect sizes across studies, and inconsistent results across different educational contexts and subject domains. The contradictory evidence indicates that while initial performance gains appear substantial, novelty effects may inflate short-term improvements, raising questions about the sustainability of learning benefits beyond the initial implementation period (Lin & Mubarok, 2021; Han et al., 2022).

The conversational and interactive characteristics of AI chatbots demonstrate effectiveness in facilitating personalized learning mechanisms that mediate improved academic outcomes, as evidenced by studies focusing on self-regulated learning support and adaptive feedback systems (Chang et al., 2023; Gupta & Chen, 2022). The evidence from

language learning contexts reveals substantial advancements in vocabulary acquisition, speaking fluency, and linguistic complexity through chatbot interactions, suggesting enhanced comprehension and practical application of concepts (Lin & Mubarok, 2021; Graesser et al., 2014). Nevertheless, Table 3 highlights concerning contradictory evidence regarding the limited transfer of these improvements to real-world communication skills and the challenges in scaling collaborative chatbot interactions to diverse academic subjects beyond structured knowledge domains (Tegos & Demetriadis, 2017; Tegos et al., 2015). The systematic analysis reveals that chatbot effectiveness varies significantly by student prior knowledge, collaboration skills, and cultural context, with notable disparities in implementation success across different demographic groups and socioeconomic backgrounds (Al-Sharafi et al., 2023; Tamayo et al., 2020).

Furthermore, while students generally perceive chatbot learning as more efficient, engaging, and responsive compared to traditional approaches, Table 3 documents significant gaps between reported acceptance intentions and actual sustained usage patterns (Chen et al., 2023; Neo et al., 2022). The evidence indicates that approximately one-third of students express concerns about data privacy, emotional detachment, and accessibility barriers associated with chatbot use, while faculty implementation challenges and student technology anxiety create additional obstacles to successful integration (Essel et al., 2022; Rudolph et al., 2023). The contradictory evidence reveals that post-pandemic usage patterns show declining engagement, suggesting that emergency adoption contexts may not reflect normal educational integration outcomes, and that high implementation and maintenance costs raise sustainability questions about long-term institutional viability (Han et al., 2022; Gupta & Chen, 2022). These findings collectively indicate that while AI chatbots demonstrate promise for enhancing student learning outcomes through personalized, conversational educational experiences, the current evidence base suffers from methodological limitations, implementation challenges, and equity concerns that require resolution through more rigorous experimental research designs, longitudinal impact assessments, and comprehensive evaluation of effectiveness across diverse educational contexts and student populations to fully realize their transformative potential in higher education settings.

Table 3: List of the Authors' Work on AI Chatbots on Students' Learning.

Author	Research Settings	Management Claims	Methodological Limitations	Contradictory Evidence
Wu & Yu, 2024	Systematic review of 24 randomized controlled trials	Statistically significant improvement in learning outcomes across multiple contexts	Publication bias and heterogeneity in effect sizes across studies	Inconsistent results across different educational contexts and subject domains
Chen et al., 2023	University business education programs across multiple institutions	Enhanced learning engagement and improved academic performance metrics	A cross-sectional survey design lacks causal inference capability	The gap between acceptance intention and actual sustained usage patterns
Essel et al., 2022	Controlled experimental educational settings in higher education	Improved instructional efficiency and personalized learning support	Limited longitudinal follow-up and small experimental sample size	Faculty implementation challenges and student technology anxiety were reported
Lin & Mubarak, 2021	English as a Foreign Language (EFL) university students in Asia	Significant improvement in speaking fluency and pronunciation accuracy	The short-term intervention period is insufficient for sustained skill development	Novelty effects may inflate initial performance gains; limited transfer to real-world communication
Graesser et al., 2014	STEM education programs in multiple universities	Demonstrated effectiveness in improving writing quality and academic performance	Absence of a randomized control group design weakens causal interpretations	Limited applicability beyond structured knowledge domains
Chang et al., 2023	Educational design framework for online learning environments	Enhanced goal-setting behavior and personalized feedback mechanisms	The theoretical framework lacks empirical validation in real classroom settings	Limited evidence of actual self-regulation skill transfer to other academic tasks
Tegos & Demetriadis, 2017	Online and distance learning environments in computer science	Improved student interaction quality and knowledge construction processes	Single institution study with limited disciplinary scope	Challenges in scaling collaborative chatbot interactions to diverse academic subjects
Al-Sharafi et al., 2023	University student populations across multiple countries and disciplines	High acceptance rates and positive behavioral intentions toward chatbot use	Reliance on self-reported measures introduces response bias and social desirability	Significant cultural and demographic variations in acceptance and effectiveness
Han et al., 2022	Controlled experimental educational settings during emergency remote teaching	Accelerated technology acceptance and improved learning continuity	Pandemic context limits generalizability to normal educational conditions	Post-pandemic usage decline observed; emergency adoption differs from planned integration
Gupta & Chen, 2022	Graduate business programs with advanced technological infrastructure	Enhanced adaptive learning experiences and improved retention rates	Proprietary chatbot system limits replication and independent validation	High implementation and maintenance costs raise questions about scalability and sustainability
Tegos et al., 2015	STEM education programs focusing on computer science and mathematics	Facilitated peer learning interactions and improved problem-solving outcomes	Limited sample diversity and short-term assessment of learning effects	Effectiveness varies significantly by students' prior knowledge and collaboration skills
Tamayo et al., 2020	Spanish higher education institutions across multiple disciplines	Positive reception and measurable improvement in course completion rates	Cultural and linguistic context limit broader international applicability	Significant variation in effectiveness across different academic subjects and student demographics
Tegos et al., 2016	Online and distance learning platforms for higher education courses	Improved knowledge sharing efficiency and collaborative learning outcomes	Study design limitations and potential selection bias in participant recruitment	Difficulties in maintaining sustained engagement beyond the initial implementation period
Rudolph et al., 2023	Analysis of ChatGPT's performance across multiple educational tasks and contexts	Transformative potential for personalized tutoring and academic support	Lack of controlled experimental design and systematic outcome measurement	Concerns about academic integrity, misinformation propagation, and over-reliance on AI assistance
Neo et al., 2022	Online and distance learning environments during the COVID-19 pandemic	Improved knowledge retention and enhanced student satisfaction with the learning experience	Single-country study with a specific cultural and technological context	Technology access disparities and digital divide issues affect the equitable implementation

4.3. AI Chatbots and Educator Roles in Teaching

The examination of AI chatbots' impact on educator roles and teaching practices, as comprehensively documented in Table 4, addresses

the third research objective by revealing the complex transformation occurring in pedagogical approaches and professional responsibilities within higher education contexts. The evidence demonstrates that while there exists a notable scarcity of rigorous

empirical research specifically focused on educator experiences with AI chatbots, the available studies indicate significant potential for augmenting pedagogical methods through enhanced instructional content creation and personalized explanation delivery capabilities (Rudolph et al., 2023; Chen et al., 2023). However, Table 4 reveals concerning contradictory evidence, including substantial faculty concerns about academic integrity, job displacement fears, and over-reliance on AI assistance, which create significant barriers to

successful implementation despite the theoretical promise of these technologies. The systematic analysis indicates that while chatbots demonstrate capacity for facilitating interactive material delivery modalities that extend beyond traditional lecture formats, the current AI limitations in handling complex pedagogical reasoning and creative instruction tasks challenge claims about transformative educational impact (Chang et al., 2023; Lin & Mubarok, 2021).

Table 4: List of the Authors' Work on AI Chatbots on Educators' Abilities.

Author	Research Settings	Management Claims	Methodological Limitations	Contradictory Evidence
Rudolph et al., 2023	Higher education institutions and language education contexts	Enhanced instructional content creation and personalized explanation delivery capabilities	Absence of controlled experimental design and systematic outcome measurement	Faculty concerns about academic integrity, job displacement, and over-reliance on AI assistance
Chen et al., 2023	STEM education programs and technical disciplines	Improved teaching efficiency through automated grading and personalized learning pathways	Cross-sectional survey methodology limits causal inference about teaching effectiveness	High implementation costs and extensive faculty training requirements create adoption barriers
Essel et al., 2022	University faculty across multiple disciplines	Significant reduction in administrative workload, enabling focus on complex pedagogical tasks	Limited longitudinal assessment of sustained teaching practice changes	Faculty resistance to technology adoption and concerns about losing direct student interaction
Wu & Yu, 2024	Systematic review across K-12 and higher education settings	Enhanced differentiated instruction and real-time student progress monitoring capabilities	Publication bias toward positive outcomes and heterogeneity in teaching contexts	Inconsistent implementation success across different educational levels and subject domains
Al-Sharafi et al., 2023	Online and distance education environments globally	Accelerated professional development and enhanced digital teaching competencies	Self-reported measures introduce social desirability bias and overestimate actual usage	Significant cultural and institutional variations in educator acceptance and effective implementation
Chang et al., 2023	Framework development for higher education institutions	Facilitation of innovative teaching methods and enhanced student self-regulation support	The theoretical framework lacks empirical validation in authentic classroom environments	Current AI limitations in handling complex pedagogical reasoning and creative instruction
Lin & Mubarok, 2021	STEM and language education programs in Asian universities	Improved instructional personalization and enhanced student-teacher interaction quality	Single-institution focus limits generalizability to diverse educational contexts	Technology reliability issues and maintenance challenges affect consistent teaching support
Gupta & Chen, 2022	Graduate programs and advanced technical education	Enhanced adaptive teaching capabilities and improved student learning analytics	Proprietary system evaluation limits independent replication and broader validation	Substantial ongoing training requirements and steep learning curves for effective implementation
Tamayo et al., 2020	Spanish higher education institutions across multiple disciplines	Positive faculty reception and willingness to integrate AI tools into instruction	Cultural and linguistic context constraints limit international applicability	Preference for human interaction in complex pedagogical decisions and creative teaching tasks
Maphosha et al., 2023	Sub-Saharan African higher education contexts	Democratization of quality teaching resources and enhanced pedagogical accessibility	Limited infrastructure and resource availability affect implementation feasibility	Digital divide and technology access inequities create differential adoption and effectiveness
Rudolph et al., 2024	Comprehensive analysis across multiple educational technology platforms	Revolutionary potential for personalized tutoring and instructional content generation	Lack of systematic empirical evidence and reliance on anecdotal implementation reports	Privacy concerns, data security issues, and institutional policy gaps hinder widespread adoption
Bozkurt et al., 2023	Meta-analysis of international research across diverse educational contexts	Enhanced teaching productivity and improved instructional quality through AI augmentation	Methodological heterogeneity across reviewed studies limits conclusive findings	Ethical concerns about algorithmic bias and maintaining authentic human-centered pedagogy

The evidence suggests that AI chatbots can potentially enable educators to redistribute their professional responsibilities by automating routine administrative tasks, repetitive student inquiries, and basic content explanations, theoretically allowing more time for complex pedagogical activities and meaningful student mentoring (Essel et al., 2022; Wu & Yu, 2024). Nevertheless, Table 4 documents significant contradictory evidence regarding this workload reduction claim, with studies revealing that substantial ongoing training requirements, steep learning curves for effective implementation, and technology reliability issues often increase rather than decrease overall educator workload during initial adoption phases (Gupta & Chen, 2022; Al-Sharafi et al., 2023). The analysis indicates that while chatbots can support early identification of student difficulties through learning analytics and personalized interactions, educators consistently express preferences for maintaining human interaction in complex pedagogical decisions and creative teaching tasks, suggesting a complementary rather than replacement model for AI integration (Tamayo et al., 2020; Maphosa et al., 2023). Furthermore, the evidence reveals significant cultural and institutional variations in educator acceptance and effective implementation, with digital divide issues and technology access inequities creating differential adoption patterns that may exacerbate rather than reduce educational disparities (Bozkurt et al., 2023; Rudolph et al., 2024).

The transformation of educator roles through AI chatbot integration encompasses enhanced classroom administration capabilities, including automated assignment generation, grading processes, student progress monitoring, and participation assessment, which theoretically facilitate improved instructional management and prompt feedback delivery. However, Table 4 highlights critical contradictory evidence regarding the practical implementation of these administrative enhancements, including privacy concerns, data security issues, institutional policy gaps, and ethical considerations about algorithmic bias that hinder widespread adoption and effective utilization (Rudolph et al., 2023; Bozkurt et al., 2023). The systematic analysis reveals that successful integration requires comprehensive institutional frameworks addressing faculty resistance to technology adoption, concerns about losing direct student interaction, and the need for maintaining authentic human-centered pedagogy while leveraging AI efficiencies.

These findings collectively indicate that while AI

chatbots offer promising opportunities for augmenting educator capabilities and transforming teaching practices, the current evidence base reveals substantial implementation challenges, methodological limitations in existing research, and contradictory outcomes that necessitate careful institutional planning, extensive faculty development programs, and ethical frameworks to ensure that technological integration genuinely enhances rather than complicates the essential human elements of educational practice in higher education settings.

5. CONCLUSION

This systematic literature review has provided a comprehensive examination of AI chatbots' transformative impact on higher education ecosystems through a rigorous analysis of 77 peer-reviewed studies spanning 2014-2024. The researcher's investigation reveals a rapidly evolving research landscape characterized by exponential growth in scholarly attention, particularly following the 2019 inflection point that coincided with increased digital transformation in educational contexts. **The structural topic modeling analysis identified three interconnected research domains with distinct evolutionary trajectories** AI chatbot adoption (44% of literature) demonstrates declining research novelty as implementation strategies mature; student learning impact studies (30%) maintain consistent methodological focus with growing consensus on measurement approaches; and educator role transformation research (25%) exhibits the most dramatic growth trajectory, evolving from negligible attention to the fastest-growing research priority by 2024.

The synthesis of empirical evidence across these domains reveals significant tensions between theoretical promise and practical implementation reality. While meta-analytical evidence from Wu and Yu (2024) demonstrates statistically significant positive effects on student learning outcomes, the study's critical analysis exposes concerning methodological limitations, including publication bias, short-term study horizons, and limited transferability across disciplinary contexts. The predominant focus on technology-centric adoption factors has obscured critical human-centered implementation challenges, including faculty resistance, cultural variations in acceptance patterns, and equity concerns that may exacerbate rather than reduce educational disparities. Most significantly, the research reveals a fundamental gap between reported acceptance intentions and sustained usage

patterns, indicating that successful AI chatbot integration requires comprehensive institutional frameworks that extend far beyond technical deployment considerations.

From a theoretical perspective, this review challenges the prevailing dichotomous conceptualization of educational technology as either supplementary or disruptive to traditional pedagogical approaches. The findings support the emergence of a novel theoretical construct "AI-mediated educational agency" that positions learning as dynamically distributed responsibilities between human and technological actors based on their respective strengths and contextual demands. This

framework extends existing educational scaffolding theories by incorporating bidirectional technology-pedagogy influence models, where technological capabilities and pedagogical approaches co-evolve through iterative adaptation processes. The evidence suggests that effective AI chatbot integration requires moving beyond simple technology adoption models toward more sophisticated human-AI collaboration frameworks that preserve essential interpersonal elements of education while leveraging technological efficiencies for enhanced personalization and administrative optimization. Figure 7: AI-mediated education agency framework.

Figure 7: AI-Mediated Education Framework.

The practical implications of these findings are particularly relevant for institutional leaders, educational technologists, and policymakers navigating AI integration decisions. The analysis indicates that successful implementation requires phased adoption strategies with extensive faculty development programs, comprehensive ethical frameworks addressing privacy and algorithmic bias concerns, and systematic evaluation protocols that extend beyond initial novelty effects to assess sustained educational impact. Institutions must develop a nuanced understanding of domain-specific effectiveness patterns, recognizing that chatbots demonstrate particular promise in structured knowledge areas such as language learning and STEM education while facing significant limitations in creative and humanities disciplines. The evidence strongly suggests that cost-effectiveness

considerations and sustainability planning should be prioritized early in implementation processes, given the substantial ongoing training requirements and maintenance challenges documented across multiple studies.

6. LIMITATIONS AND FUTURE AGENDA

Several important limitations constrain the generalizability of this study's findings. The literature base exhibits notable geographic and cultural bias toward developed countries with advanced technological infrastructure, limiting insights into implementation challenges in resource-constrained environments. The predominance of short-term studies (≤ 12 months) prevents a comprehensive assessment of sustained educational impacts, while the scarcity of rigorous experimental designs with adequate control groups weakens

causal inference capabilities. Additionally, the rapid evolution of AI technologies means that findings regarding earlier chatbot implementations may not fully reflect the capabilities and limitations of current generative AI systems. The review's focus on peer-reviewed academic literature may have excluded valuable insights from grey literature and industry implementation reports.

Future research priorities should address these limitations through several critical directions. First, longitudinal studies examining the sustained effects of AI chatbot integration beyond initial implementation periods (24+ months) are essential for validating claimed educational benefits and identifying optimal implementation strategies. Second, rigorous experimental designs with adequate sample sizes and randomized control

groups are needed to establish causal relationships between chatbot interventions and learning outcomes across diverse educational contexts. Third, comprehensive equity and inclusion research must investigate differential impacts across socioeconomic, cultural, and demographic groups to ensure that AI integration does not exacerbate existing educational inequalities. Fourth, cost-effectiveness analyses comparing AI chatbot implementations with alternative educational interventions would provide crucial decision-making guidance for resource allocation. Finally, interdisciplinary research examining the psychological, sociological, and ethical dimensions of human-AI educational relationships is needed to develop more sophisticated theoretical frameworks for understanding optimal collaboration models.

Acknowledgements: This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2504).

REFERENCES

Aeni, N., Muthmainnah, Khang, A., Al Yakin, A., Yunus, M., & Cardoso, L. (2023). Revolutionized Teaching by Incorporating Artificial Intelligence Chatbot for Higher Education Ecosystem. *AI-Centric Modeling and Analytics: Concepts, Technologies, and Applications*, 43–76. <https://doi.org/10.1201/9781003400110-4/revolutionized-teaching-incorporating-artificial-intelligence-chatbot-in-higher-education-ecosystem> nur aeni muthmainnah, alex khang, ahmad al yakin, muhammad yunus lu

Antony, J. (2017). Lean Six Sigma for higher education. In *International Journal of Productivity and Performance Management* (Vol. 66, Issue 5, pp. 574–576). Emerald Group Publishing Ltd. <https://doi.org/10.1108/IJPPM-03-2017-0063>

Antony, S., & education, R. R. in. (n.d.). A Phenomenological Exploration of Students' Perceptions of AI Chatbots in Higher Education. Researchgate.Net. <https://doi.org/10.22492/ije.11.2.02>

Arun, K., Nagesh, A. S., & Ganga, P. (2019). A Multi-Model And Ai-Based Collegebot Management System (Aicms) For Professional Engineering Colleges. *International Journal of Innovative Technology and Exploring Engineering (IJITEE)*, 9, 2278–3075. <https://doi.org/10.35940/ijitee.I8818.078919>

Belda-Medina, J., & Calvo-Ferrer, J. R. (2022). Using Chatbots as AI Conversational Partners in Language Learning. *Applied Sciences* (Switzerland), 12(17), 8427. <https://doi.org/10.3390/APP12178427/S1>

Bryant, A., Montemann, R., Chen, M., Bellavista, P., Suzuki, K., Treffers-Daller, J., Lozić, E. L., & Štular, B. (2023a). Fluent but Not Factual: A Comparative Analysis of ChatGPT and Other AI Chatbots' Proficiency and Originality in Scientific Writing for Humanities. *Future Internet* 2023, Vol. 15, Page 336, 15(10), 336. <https://doi.org/10.3390/FI15100336>

Bryant, A., Montemann, R., Chen, M., Bellavista, P., Suzuki, K., Treffers-Daller, J., Lozić, E. L., & Štular, B. (2023b). Fluent but Not Factual: A Comparative Analysis of ChatGPT and Other AI Chatbots' Proficiency and Originality in Scientific Writing for Humanities. *Future Internet* 2023, Vol. 15, Page 336, 15(10), 336. <https://doi.org/10.3390/FI15100336>

Chang, D. H., Lin, M. P. C., Hajian, S., & Wang, Q. Q. (2023a). Educational Design Principles of Using AI Chatbot That Supports Self-Regulated Learning in Education: Goal Setting, Feedback, and Personalization. *Sustainability* 2023, Vol. 15, Page 12921, 15(17), 12921. <https://doi.org/10.3390/SU151712921>

Chang, D. H., Lin, M. P. C., Hajian, S., & Wang, Q. Q. (2023b). Educational Design Principles of Using AI Chatbot That Supports Self-Regulated Learning in Education: Goal Setting, Feedback, and Personalization. *Sustainability* 2023, Vol. 15, Page 12921, 15(17), 12921. <https://doi.org/10.3390/SU151712921>

Chang, D. H., Lin, M. P. C., Hajian, S., & Wang, Q. Q. (2023c). Educational Design Principles of Using AI Chatbot That Supports Self-Regulated Learning in Education: Goal Setting, Feedback, and Personalization. *Sustainability* 2023, Vol. 15, Page 12921, 15(17), 12921. <https://doi.org/10.3390/SU151712921>

Dempere, J., Modugu, K., Hesham, A., & Ramasamy, L. K. (2023a). The impact of ChatGPT on higher education. *Frontiers in Education*, 8. <https://doi.org/10.3389/FEDUC.2023.1206936>

Dempere, J., Modugu, K., Hesham, A., & Ramasamy, L. K. (2023b). The impact of ChatGPT on higher education. *Frontiers in Education*, 8. <https://doi.org/10.3389/FEDUC.2023.1206936>

EL Azhari, K., Hilal, I., Daoudi, N., & Ajhoun, R. (2023). SMART Chatbots in the E-learning Domain: A Systematic Literature Review. *International Journal of Interactive Mobile Technologies*, 17(15), 4. <https://doi.org/10.3991/IJIM.V17I15.40315>

Farazouli, A., Cerratto-Pargman, T., Bolander-Laksov, K., & McGrath, C. (2023). Hello GPT! Goodbye home examination? An exploratory study of AI chatbots impact on university teachers' assessment practices. *Assessment & Evaluation in Higher Education*. <https://doi.org/10.1080/02602938.2023.2241676>

George, B., & Wooden, O. (2023). Managing the Strategic Transformation of Higher Education through Artificial Intelligence. *Administrative Sciences* 2023, Vol. 13, Page 196, 13(9), 196. <https://doi.org/10.3390/ADMSCI13090196>

Gill, S. S., Xu, M., Patros, P., Wu, H., Kaur, R., Kaur, K., Fuller, S., Singh, M., Arora, P., Parlikad, A. K., Stankovski, V., Abraham, A., Ghosh, S. K., Lutfiyya, H., Kanhere, S. S., Bahsoon, R., Rana, O., Dustdar, S., Sakellariou, R., ... Buyya, R. (2024a). Transformative effects of ChatGPT on modern education: Emerging Era of AI Chatbots. *Internet of Things and Cyber-Physical Systems*, 4, 19–23. <https://doi.org/10.1016/J.IOTCPS.2023.06.002>

Gill, S. S., Xu, M., Patros, P., Wu, H., Kaur, R., Kaur, K., Fuller, S., Singh, M., Arora, P., Parlikad, A. K., Stankovski, V., Abraham, A., Ghosh, S. K., Lutfiyya, H., Kanhere, S. S., Bahsoon, R., Rana, O., Dustdar, S., Sakellariou, R., ... Buyya, R. (2024b). Transformative effects of ChatGPT on modern education: Emerging Era of AI Chatbots. *Internet of Things and Cyber-Physical Systems*, 4, 19–23. <https://doi.org/10.1016/J.IOTCPS.2023.06.002>

Gleeson, R., Bartok, L., & Barreiros, C. S. (2023). "Feedback is not Embarrassing but Helpful :)": An Exploratory Study on the Applicability of Constructive Feedback Checklists for Lecturers in Online Learning Settings. *Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 14200 LNCS, 560–565. https://doi.org/10.1007/978-3-031-42682-7_42/COVER

Guan, C., Mou, J., & Jiang, Z. (2020). Artificial intelligence innovation in education: A twenty-year data-driven historical analysis. *International Journal of Innovation Studies*, 4(4), 134–147. <https://doi.org/10.1016/J.IJIS.2020.09.001>

Hockly, N. (2023). Artificial Intelligence in English Language Teaching: The Good, the Bad and the Ugly. [Https://Doi.Org/10.1177/00336882231168504](https://doi.org/10.1177/00336882231168504), 54(2), 445–451. <https://doi.org/10.1177/00336882231168504>

Ilieva, G., Yankova, T., Klisarova-Belcheva, S., Dimitrov, A., Bratkov, M., & Angelov, D. (2023). Effects of Generative Chatbots in Higher Education. *Information* 2023, Vol. 14, Page 492, 14(9), 492. <https://doi.org/10.3390/INFO14090492>

Javaid, M., Haleem, A., Singh, R. P., Khan, S., & Khan, I. H. (2023). Unlocking the opportunities through ChatGPT Tool towards ameliorating the education system. *BenchCouncil Transactions on Benchmarks, Standards and Evaluations*, 3(2), 100115. <https://doi.org/10.1016/J.TBENCH.2023.100115>

Karam, J. (2023). Reforming Higher Education Through AI. *Governance in Higher Education*, 275–306. https://doi.org/10.1007/978-3-031-40586-0_12

Khan, N., & Qureshi, M. I. (2020). A systematic literature review on online medical services in Malaysia. *International Journal of Online and Biomedical Engineering*, 16(6), 107–118. <https://doi.org/10.3991/ijoe.v16i06.13573>

Khan, N., Qureshi, M. I., Falahat, M., Sikandar, H., & Sham, R. B. (2025). Navigating the Renewable Energy Transition: A Systematic Review of Economic and Policy Strategies for Grid Integration, Stability, and Viability. *International Journal of Energy Economics and Policy*, 15(4), 709–723. <https://doi.org/10.32479/IJEEP.20348>

Kim, H.-S. (2021). KOREAN JOURNAL OF ENGLISH LANGUAGE AND LINGUISTICS Effects of AI Chatbots on EFL Students' Communication Skills * Effects of AI chatbots on EFL students' communication skills. *Korean Journal of English Language and Linguistics*, 21, 712–734. <https://doi.org/10.15738/kjell.21..202108.712>

Kim, H.-S., 김나영, & 차윤정. (2021). Is It Beneficial to Use AI Chatbots to Improve Learners' Speaking

Performance? Journal of Asia TEFL, 18(1), 161-178. <https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10649596>

Labadze, L., Grigolia, M., & Machaidze, L. (2023). Role of AI chatbots in education: systematic literature review. International Journal of Educational Technology in Higher Education, 20(1), 1-17. <https://doi.org/10.1186/S41239-023-00426-1/FIGURES/1>

Meng, J., Rheu, M. M. J., Zhang, Y., Dai, Y., & Peng, W. (2023). Mediated Social Support for Distress Reduction: AI Chatbots vs. Human. Proceedings of the ACM on Human-Computer Interaction, 7(CSCW1). <https://doi.org/10.1145/3579505>

Mohd Rahim, N. I., A. Iahad, N., Yusof, A. F., & A. Al-Sharafi, M. (2022). AI-Based Chatbots Adoption Model for Higher-Education Institutions: A Hybrid PLS-SEM-Neural Network Modelling Approach. Sustainability 2022, Vol. 14, Page 12726, 14(19), 12726. <https://doi.org/10.3390/SU141912726>

Neo, M. (2022). THE MERLIN PROJECT: MALAYSIAN STUDENTS' ACCEPTANCE OF AN AI CHATBOT IN THEIR LEARNING PROCESS. Turkish Online Journal of Distance Education, 23(3), 31-48. <https://doi.org/10.17718/TOJDE.1137122>

Niemi, H. (2024). AI in Education and Learning: Perspectives on the Education Ecosystem. New Frontiers in Science in the Era of AI, 169-194. https://doi.org/10.1007/978-3-031-61187-2_11

Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Mckenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, 372. <https://doi.org/10.1136/BMJ.N160>

Paliwal, S., Bharti, V., & Mishra, A. K. (2019). Ai chatbots: Transforming the digital world. Intelligent Systems Reference Library, 172, 455-482. https://doi.org/10.1007/978-3-030-32644-9_34/COVER

Qureshi, M. I., & Khan, N. (2022). Business disruptions and innovations beyond COVID-19. Foresight, 24(3/4), 297-300.

Riapina, N. (2023). Teaching AI-Enabled Business Communication in Higher Education: A Practical Framework. <Https://Doi.Org/10.1177/23294906231199249>. <https://doi.org/10.1177/23294906231199249>

Rattanawiboonson, V., & Khan, N. (2024). Blockchain Technology in Mobile Payments: A Systematic Review of Security Enhancements in Mobile Commerce. International Journal of Interactive Mobile Technologies, 18(21), 134. <https://doi.org/10.3991/IJIM.V18I21.52099>

Rattanawiboonson, V., Sikandar, H., Thatsaringkharnsakun, U., & Khan, N. (2025). The Role of Mobile Technologies in Tracking Cyberbullying Trends and Social Adaptation among Teenagers. International Journal of Interactive Mobile Technologies, 19(1), 171. <https://doi.org/10.3991/IJIM.V19I01.52747>

Rudolph, J., Director, A. A., Research, O., & Singapore, K. (2023). War of the chatbots: Bard, Bing Chat, ChatGPT, Ernie and beyond. The new AI gold rush and its impact on higher education. Journal of Applied Learning and Teaching, 6(1), 364-389. <https://doi.org/10.37074/JALT.2023.6.1.23>

Sakr, N., Salama, A., Tameesh, N., & Osman, G. (2021). EduPal Leaves No Professor Behind: Supporting Faculty via a Peer-Powered Recommender System. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12749 LNAI, 302-307. https://doi.org/10.1007/978-3-030-78270-2_54/COVER

Su, J., & Yang, W. (2023). Unlocking the Power of ChatGPT: A Framework for Applying Generative AI in Education. ECNU Review of Education, 6(3), 355-366. https://doi.org/10.1177/20965311231168423/ASSET/IMAGES/LARGE/10.1177_20965311231168423-FIG1.JPG

Wang, T., Lund, B. D., Marengo, A., Pagano, A., Mannuru, N. R., Teel, Z. A., & Pange, J. (2023). Exploring the Potential Impact of Artificial Intelligence (AI) on International Students in Higher Education: Generative AI, Chatbots, Analytics, and International Student Success. Applied Sciences 2023, Vol. 13, Page 6716, 13(11), 6716. <https://doi.org/10.3390/APP13116716>

Williams, P. (2023). AI, Analytics and a New Assessment Model for Universities. Education Sciences 2023, Vol. 13, Page 1040, 13(10), 1040. <https://doi.org/10.3390/EDUCSCI13101040>

Wu, R., & Yu, Z. (2024a). Do AI chatbots improve students learning outcomes? Evidence from a meta-analysis. British Journal of Educational Technology, 55(1), 10-33. <https://doi.org/10.1111/BJET.13334>

Wu, R., & Yu, Z. (2024b). Do AI chatbots improve students learning outcomes? Evidence from a meta-analysis.

British Journal of Educational Technology, 55(1), 10-33. <https://doi.org/10.1111/BJET.13334>

Yang, S., & Evans, C. (2019). Opportunities and challenges in using AI chatbots in higher education. ACM International Conference Proceeding Series, 79-83. <https://doi.org/10.1145/3371647.3371659>