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ABSTRACT 

The role of heart disease prediction in healthcare is especially important, as it allows taking timely actions 
and making informed decisions. This paper has proposed an Enhanced Deep Learning-based Heart Disease 
Prediction Model (DL-HDP) that integrates optimization via Particle Swarm Optimization (PSO). The model 
is based on the deep learning model, namely Multilayer Perceptron (MLP), to classify heart disease with the 
use critical medical features like age, blood pressure, cholesterol levels, and ECG results. It uses PSO 
optimization algorithm to tune hyperparameters and select features and optimizes hyperparameters to tune 
the number of neurons, learning rates, and activation functions to improve the performance of the model. The 
performance of DL-HDP on experimental data proves that it is much more accurate, precise, and recalls than 
any traditional machine learning algorithms, proving the potency of deep learning with nature-inspired 
optimization. This is a valid method that has resulted in a reliable and effective tool in identifying heart 
disease early on, which is in aid of informing better clinical practice. 

KEYWORDS: Heart Disease Prediction, Deep Learning, Particle Swarm Optimization (PSO), Multilayer 
Perceptron (MLP), Hyperparameter Tuning, Healthcare, Classification Accuracy. 

mailto:senthilt2@srmist.edu.in


2440 HARIPRIYA VENKATARAMAN et al. 
 

SCIENTIFIC CULTURE, Vol. 12, No 1.1, (2026), pp. 2439-2450 

1. INTRODUCTION 

Cardiovascular disease (CVD) or heart disease is 
one of the gravest health issues globally and millions 
of people die due to this disease each year. Recent 
statistics provided by the World Health Organization 
(WHO) point out that heart disease is the cause of 
death in majority of the world deaths with an 
equivalent of 17.9 million deaths being recorded 
annually amounting to about 32% of global deaths 
[1]. Heart disease is becoming one of the most 
common ailments affecting people due to various 
reasons including lack of exercise, poor eating habits, 
stress, smoking and family history [2]. Such a 
frightening situation has motivated the health care 
fraternity to find uplifted, precise and timely 
diagnostic system to forecast heart disease and take 
right medical actions in time. 

Conventional practices of diagnosing diseases are 
intensive in the use of clinical exams like 
Electrocardiograms (ECG), treadmills, 
echocardiograms and the medical history of the 
patient [3]. Although such techniques are effective 
they are very operator and operator-dependent and 
therefore subject to delays in diagnosis and 
diagnostic variation in the case of healthcare 
professionals. Additionally, the high rate at which 
data involving patients undergoing clinical test is 
being created opens a chance to create data-driven 
predictive systems that could help in the accurate 
detection of heart diseases [4]. Take advantage of 
artificial intelligence (AI) and primarily machine 
learning (ML) and deep learning (DL) technologies as 
one of the potential solutions in this regard that can 
automatically identify the complex patterns through 
the big data and provide only fact-driven decisions 
that are not biased [5]. 

Some of the ML algorithms used over the past few 
years to forecast heart disease include Decision Tree, 
Random Forest, Naive Bayes, Support Vector 
Machines (SVM) and k-Nearest Neighbors (k-NN) 
algorithms [6]. Such methods make use of the 
historical clinical records of the patients which 
include their age, blood pressure, cholesterol, 
maximum heart rate, and ECG findings in order to 
categorize the heart disease or lack thereof. 
Nevertheless, traditional ML algorithms have 
specific drawbacks. They usually need manual 
selected characteristics, deal with too much pre-
processing data, and can hardly detect non-linear 
and high-dimensional relationships in clinical data 
sets [7]. In addition, the functioning of these 
algorithms can strongly depend on feature 
engineering that usually requires specific domain 

knowledge and can result in human bias [8]. 
In a bid to address these shortcomings, deep 

learning (DL), a subfield of machine learning has 
attracted a lot of attention. Deep learning models 
particularly Multilayer Perceptrons (MLP) have 
proved to perform better because they automatically 
learn hierarchical feature representation of raw data 
without involving human feature engineering [9]. 
The high suitability of MLP in the medical diagnostic 
application is due to a capacity of modeling complex, 
non-linear patterns because of having multiple layers 
of interconnected neurons [10]. 

Though DL models have their benefits, the choice 
of the best hyperparameters is one of the most 
important tasks. The number of the hidden neurons, 
number of layers, learning rates, batch sizes and 
activation functions are hyperparameters that 
significantly influence the performance of the models 
[11]. Poor hyperparameter tuning may cause the 
problem of underfitting, overfitting, low-speed 
convergence, and low overall accuracy. Adjacent 
hyperparameter tuning is a cumbersome, time-
fraudulent and nonviable procedure particularly on 
large records and complicated models [12]. As such, 
there has been urgency in incorporating automated 
optimization methods which will be able to conduct 
searches of optimal hyperparameters in a 
computationally effective manner. 

Particle Swarm Optimization (PSO) is a well-
known metaheuristic algorithm based on population 
found in bird flocking and fish schooling models, 
which has first appeared simple, converges quickly 
and is insensitive to the global optimization 
problems [13]. PSO was well used in other 
optimization tasks: feature selection and set of 
hyperparameters in ML and DL applications [14]. 
Having incorporated PSO with deep learning 
frameworks, both feature subsets and network 
hyper-parameters can be optimized to allow the 
predictive performance of DL models to diagnose 
heart diseases to be enhanced. 

This study hypothesizes an Enhanced Deep 
Learning (DL) based Heart Disease Prediction (HDP) 
framework, which is a synergetic integration of 
feature learning ability of Multilayer Perceptron 
(MLP) and the optimization capability of Particle 
Swarm Optimization (PSO). This paper offers a 
summary of the main contributions of this research 
as below 

i. A hybrid DL-HDP is formulated, where an 
MLP model is used in predicting the heart 
disease using clinically sensitive characteristics 
including age, resting blood pressure, serum 
cholesterol, fasting blood sugar, 
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electrocardiogram results, maximum heart 
rate, and exercise-induced angina. 

ii. PSO is applied to do feature selection and 
hyperparameter tuning concurrently. This 
simplifies calculations by drop off redundant 
and less informative features and shifts hyper 
parameters such as number of neurons, 
learning rate and activation functions to have 
better classification abilities. 

iii. The proposed model is assessed on well-
known publicly available data of heart 
diseases, and its grade is cross-referenced with 
common machine learning classicians like 
SVM, Decision Trees, k-NN, and standard 
MLP without improved implementation. The 
proposed DL-HDP has comparable better 
performance at the levels of accuracy, 
precision, recall, and F1-score consistently. 

iv. The study approves the practical utility of 
PSO-based DL models in practice applications 
in healthcare settings and presents a reliable, 
scalable, and interpretable diagnostic decision-
support system that has the possible potential 
of improving clinical decision-making and 
alleviating diagnostic errors. 

The rest of the paper would flow as follows: In 
section II, a concise literature review of existing 
approaches in the prediction of heart diseases using 
both machine learning and deep learning as well as 
using optimization would be provided. Section III 
explains the procedure, i.e., information about the 
dataset, dataset pre-processing, MLP model 
architecture, and the application of the PSO 
algorithm to the settings of the features and 
hyperparameters. Section IV talks on the discussion 
of the experiment design, evaluation and the baseline 
techniques applied in comparing the performance. 
Section V draws a conclusion of paper summarizing 
the major findings and highlighting the future 
directions of research on the enhancement of 
intelligent heart diseases predicting systems. 

2. RELATED WORKS 

Over the past few years, a quick growth has been 
observed in the use of machine learning (ML) and 
deep learning (DL) strategies in healthcare and 
specifically in predicting heart diseases. Several 
authors have searched the ML classifier, Decision 
Trees, Support Vector Machines (SVM), k-Nearest 
Neighbors (k-NN), and Random Forest in predicting 
heart-related disorders. As an example, a 
comparative study of Kumar et al. [15] indicated that 
ensemble training techniques such as Random Forest 
tend to beat single classifier due to its ability to 

improve the overall performance of a classification 
task of the binary classification of heart diseases. 

The models of deep learning gained more and 
more popularity due to a better ability of features 
abstraction. Hasan and Mustafa [16] placed an MLP-
based model to detect cardiovascular diseases and 
proved that compared to conventional ML 
applications, the accuracy increased significantly. In 
the same manner, Murugan et al. [17] used a 
framework based on Convolutional Neural Network 
(CNN) in structured clinical data and it resulted in 
high precision in the heart disease classification. With 
a view to increasing the predictive performance, a 
number of authors have experimented with the so-
called hybrid techniques, wherein both ML/DL 
methods and optimization algorithms are used 
together. Sahu et al. [18] utilized a deep neural 
network optimized by PSO in making heart disease 
predictions and managed to enhance the accuracy of 
their classification results through hyperparameters 
tuning and feature selection. Yadav and Singh [19] 
reviewed the situation of PSO-based feature selection 
regarding the healthcare field and emphasized the 
benefits of such application, implying reducing 
dimensionality and achieving high classification 
results. 

There are also other metaheuristic rules that have 
been written out to enhance the results of the 
prediction. Mahajan et al. [20] employed Genetic 
Algorithm (GA) in the selection of features, hence 
better generalization of the model. Similarly, Siva et 
al. [21] incorporated a deep learning classifier into 
Whale Optimization Algorithm (WOA) achieving a 
competitive performance on the Cleveland dataset. 
In the recent past, there has been emergence of more 
complex hybrid frameworks. A hybrid PSO-MLP 
model of Kumari and Krishna [22] and their 
performance on various machine learning classifiers 
was proved to achieve better results than other 
algorithms (in terms of the precision and recall 
scores). Chen et al. [23] applied PSO to neural 
architecture search in MLP models, where 
hyperparameter optimization has been automated, 
and more time to train has been achieved. A number 
of studies have also indicated the importance of 
feature engineering and data pre-processing. A 
detailed review of the feature selection in healthcare 
applications was given by Mukherjee and Saha [24] 
with the focus on the necessity to consider it as a 
solution to lessen complexity in models and improve 
their interpretability. Priyanka and Gowtham [25] 
explored pre-processing and its effect on the 
classification of ML models to predict cardiovascular 
diseases. 
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The universal relevance of the deep neural 
networks in the medical field has also stretched to the 
multi-class classifications cases. The study by Sharma 
et al. [26] constitutes a hybrid system based on CNN-
LSTM to design a multi-class classification model to 
anticipate the different levels of heart disease. In a 
similar manner, Joshi et al. [27] used a deep learning 
pipeline consisting of both CNN and Bi-LSTM 
models to get a considerable boost in the process of 
deep learning in both binary and multi-class heart 
disease classification tasks. The new trend is the 
practice of explainable AI (XAI) techniques. Pathan 
and Patil [28] combined explainability models like 
the SHAP values with ML classifiers, giving visibility 
into the predictive results in heart disease diagnosis. 
Lastly, Rathore et al. [29] proposed an in-depth 
survey of deep learning network frameworks on 
predicting cardiovascular disease that highlights the 
emerging trends such as hybrid optimization 
algorithm and more understandable models. The 
reviewed literature is supportive in the fact that deep 
learning and optimization algorithms are effective in 
prediction of heart diseases but more can be added in 
terms of increasing the accuracy of the models, 
efficiency of feature selection, and model 
explanations. This stimulates the advancement of the 
proposed PSO-optimized deep learning framework 
in robust categorization of heart diseases. 

3. PROPOSED METHODOLOGY 

The proposed and a model of the Enhanced Deep 

Learning Heart Disease prediction (DL-HDP) is 
presented and applied on the popular UCI Cleveland 
Heart Disease Dataset [30]. The model aims to 
overcome the shortcomings of the conventional 
diagnostic systems through automatic feature 
selection, hyperparameter optimization, and use of 
deep neural network classifier allowing the 
development of an accurate and generalizable heart 
disease prediction system. The specified approach 
includes five key steps as follows (i) data pre-
processing, (ii) feature selection using PSO (iii) 
classification using MLP, (iv) PSO-driven 
hyperparameter tuning and (v) Model Training and 
Result Evaluations evaluation. System architecture 
and computational pathway are explained below. 

3.1. Dataset Description 

The experiments are on the cleveland Heart 
Disease Dataset, downloadable at the UCI Machine 
Learning Repository [30]. Thanks to the quality of 
clinical records and diagnostic relevance, this dataset 
has been frequently utilized in studies on 
cardiovascular diseases prediction. The original 
dataset consists of 303 patient records each of which 
are characterized by 76 medical attributes. But 
according to the usual procedure in literature, 14 
most important features are to be used in the model 
because these features have already been reported as 
being of clinical significance in heart disease 
prediction. 

 
Figure 1: Workflow of Proposed Model. 

The Attributes are as follows i. Numerical Attributes age, resting blood 
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pressure (trestbps), serum cholesterol (chol), 
maximum heart rate achieved (thalach), 
oldpeak (ST depression). 

ii. Categorical Attributes: sex, type of chest pain 
(cp), fasting blood sugar (fbs), resting 
electrocardiographic findings (restecg), 
exercise-augmented angina (exang), ST 
segment slope (slope), the amount of major 
vessels colored during the fluoroscopy (ca), 
thalassemia (thal). 

iii. Target Variable The diagnosis of heart disease 
(0 = no, 1 = yes). 

The distribution of the target classes was around 
54% positive (presence of heart disease), and 46% 
negative and hence the slight imbalance in classes has 
been taken care of during training through stratified 
sampling technique. The work flow of the proposed 
model is presented in Figure 1. 

3.2. Data Pre-processing 

Machine learning/deep learning requires the data 
quality, stability and consistency by performing 
preprocessing on the data. Missing values, the 
presence of mixed data types (categorical, 
numerical), and skewed features (feature scales) may 
be considered examples of data inconsistencies that 
may appear in the raw medical data (especially in 
clinical repositories, such as the UCI Cleveland Heart 
Disease Dataset [30]) and which affect the model 
performance negatively, unless dealt with 
appropriately. 

i. The dataset contains missing or undefined 
entries in features such as ca (number of major 
vessels) and thal (thalassemia condition). 
Missing continuous features are replaced 
using mean imputation. 

𝐴𝑖𝑚𝑝𝑢𝑡𝑒𝑑 =
1

𝑚
∑ 𝐴𝑖

𝑚
𝑖=1 ------ (1) 

Categorical features are filled using mode 
imputation, which replaces missing values with the 
most frequent category. 

ii. To handle categorical attributes such as sex, cp, 
fbs, restecg, exang, slope, ca, and thal, Label 
Encoding is applied to transform categories 
into integer codes, preserving ordinal 
relationships if applicable. 

𝐸𝑛𝑐𝑜𝑑𝑒𝑑(𝑎) = {0, 1, 2, 3, … , 𝑘 − 1}------ (2) 

iii. Features with different value ranges are 
normalized using Min-Max Scaling to 
standardize the input range between [0,1]. 

𝐴𝑠𝑐𝑎𝑙𝑒𝑑 =
𝐴−𝐴𝑚𝑖𝑛

𝐴𝑚𝑎𝑥−𝐴𝑚𝑖𝑛
 -------(3) 

Normalization prevents dominance of any feature 
due to higher magnitude values and stabilizes neural 
network convergence. 

iv. It splits the dataset into two parts in a way that 
training and evaluation of the model can be 
easily carried out. In particular, 80 percent of 
the data will go into the training set that will be 
employed to train the machine learning or 
deep learning models, and the rest of the data, 
20 percent, will be designated the testing set 
which will be used to assess the model 
performance using unseen data. The class 
distribution is processed as, 

|𝐷𝑇𝑟𝑎𝑖𝑛
𝑐𝑙𝑎𝑠𝑠=1|

|𝐷𝑇𝑟𝑎𝑖𝑛|
≈

|𝐷𝑇𝑒𝑠𝑡
𝑐𝑙𝑎𝑠𝑠=1|

|𝐷𝑇𝑒𝑠𝑡|
--------- (4) 

3.3. Feature Selection Using Particle Swarm 
Optimization (PSO) 

The crucial downstream process in any predictive 
model-building exercise is its feature selection, 
especially when dealing with medical datasets where 
we might have many redundant or irrelevant 
features that tend to produce an over-fitting model, 
slow the computation procedure, and result in 
overall poor classification. The DL-HDP model 
attributes the automatic selection of this most 
discriminative subset of the original 13 clinical 
attributes to the standard Particle Swarm 
Optimization (PSO). 

a. Particle Encoding Every particle is one 
possible answer to a solution in the feature 
space in PSO. In the feature selection 
technique, the particles are initialized and 
represented by binary particle vector. 

𝑃 = [𝑓1, … , 𝑓13]----- (5) 

Where, f_i=1, denotes that the i^th feature is 
chosen and f_i=0, denotes it is excluded. Such 
representation converts the problem of feature 
selection into a combinatorial optimization task of 
finding the best in terms of binary configuration. 

b. Fitness Evaluation A fitness function is used 
to drive the optimization, in which a MLP is 
trained on the features selected by a particle, 
and the correct classification file at the end of 
the MLP is evaluated. The fitness function tries 
to optimize classification error and implicit 
(unintentionally) optimize the number of 
features. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑃) = 1 −
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
---(6) 

Where, 
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TP=true positives, 
TN=true negatives, 
FP=false positives, 
FN=false negatives. 

c. PSO Velocity and Position Updates In the 
Particle Swarm Optimization (PSO) algorithm, 
the velocity and position of each particle are 
iteratively updated using specific parameters 
that guide the search process towards optimal 
solutions. The velocity of a particle, denoted as 

𝑣𝑖
(𝑡)

 represents the rate and direction of 

movement in the feature space at iteration 𝑡, 

while 𝑥𝑖
(𝑡)

 denotes the particle’s current 

position corresponding to a candidate feature 
subset. The inertia weight (𝑤) controls the 
momentum of the particle, balancing global 
and local search; a higher www promotes 
exploration of the search space, whereas a 
lower www encourages exploitation near the 
current position. The cognitive coefficient (𝑐1) 
influences the particle’s tendency to return 
towards its own personal best position (𝑃𝑏𝑒𝑠𝑡), 
enhancing individual learning. The social 
coefficient (𝑐2) governs the attraction towards 
the global best position (𝑔𝑏𝑒𝑠𝑡) discovered by 
the entire swarm, promoting collective 
learning. Additionally, two random numbers 
𝑟1 𝑎𝑛𝑑 𝑟2, sampled from a uniform distribution 
between 0 and 1, introduce stochasticity into 
the update process, ensuring diverse 
exploration and preventing premature 
convergence. Together, these parameters allow 
the swarm to effectively balance exploration 
and exploitation, leading to an efficient search 
for the optimal subset of features in high-
dimensional feature spaces. 

𝑣𝑖
(𝑡+1)

= 𝑤. 𝑣𝑖
(𝑡)

+ 𝑐1. 𝑟1. (𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖
(𝑡)

) + 𝑐2. 𝑟2. (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
(𝑡)

)----- (7) 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝑣𝑖
(𝑡+1)

-----(8) 

Here, the continuous xi is converted into binary 
selections using sigmoid transformation. 

𝑆(𝑥𝑖) =
1

1+𝑒−𝑧𝑖
, 𝑓𝑖 = {

1   𝑖𝑓 𝑆(𝑥𝑖) > 0.5 
0         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

----(9) 

3.4. Classification using MLP 

In the proposed model, the Multilayer Perceptron 
(MLP) is employed as the deep learning classifier to 
perform binary classification tasks after the optimal 
feature set has been selected. 

The MLP refers to a multi-layered, feed-forward 
and fully connected neural network who holds the 
name due to its flexibility and ability to capture 
complicated patterns in data. The MLP architecture 

is structured to have three principal parts and these 
are the input layer, the hidden layer and the output 
layer. The input layer shall be formed of  'm'  neurons 
where m is the number of features being used each 
achieved as result of preprocessing and feature 
selection processes. Subsequently, there is the 'H' in 
hidden layers whereby the hidden layers consist of 
'n_1' neurons, the ideal number of which is known by 
hyperparameter optimization. The last ventilator is 
an output layer that consists of a single output 
neuron using a sigmoid neuron activation method, 
which is more suited to binary classification, and 
gives a probability value of 0 to 1. The MLP operates 
through a process called forward propagation, where 
an input vector a ∈ Rᵈ passes through the network 
layers, producing intermediate activations and final 
output. The computation within each layer follows 
the equation: 

𝑧ℎ = 𝑊ℎ𝑥(ℎ−1) + 𝑏ℎ, 𝑥ℎ = 𝑓(𝑧)ℎ-----(10) 

where 𝑊ℎ and 𝑏ℎ represent the weight matrix and 
bias vector for the lᵗʰ layer, a⁽ˡ⁻¹⁾ is the activation from 
the previous layer, and 𝑓(𝑧) is the activation function 
applied to introduce non-linearity. ReLU (Rectified 
Linear Unit) is used as the activation function in 
hidden layers, defined as 𝑓(𝑧) = max (0, 𝑧), which 
enhances the learning capability by avoiding 
vanishing gradient issues. The final output is 
computed using the sigmoid activation function in 
the output layer: 

𝑠(𝑧) =
1

1+𝑒𝑧 ----- (11) 

This function squashes the output into the range 
(0, 1), which can be interpreted as the predicted 
probability for the positive class. 

To train the MLP, the model uses the Binary Cross 
Entropy (BCE) loss function, which quantifies the 
difference between the predicted probability pî and 
the actual label pi for each instance. The loss function 
is given by: 

𝐹 = −
1

𝑁
∑ [𝑝𝑖𝑙𝑜𝑔 𝑝𝑖̂ + (1 − 𝑝𝑖) 𝑙𝑜𝑔(1 − 𝑝𝑖̂)]𝑁

𝑖=1 ---(12) 

where N denotes the number of samples. This loss 
function penalizes incorrect predictions more 
heavily, ensuring the model learns accurate 
probability distributions. 

Overall, the MLP is chosen due to its strong 
adaptability, efficiency in structured data 
classification, and its compatibility with 
hyperparameter optimization techniques such as 
Particle Swarm Optimization (PSO), allowing it to 
achieve high classification accuracy in the proposed 
framework. 
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3.5. Hyperparameter Tuning Using PSO: 

Hyperparameter tuning plays a critical role in 
enhancing the performance of deep learning models, 
especially in structured datasets where optimal 
model configuration significantly affects 
classification accuracy and generalization ability. In 
this study, the proposed DL-HDP framework 
integrates Particle Swarm Optimization (PSO) to 
automatically identify the optimal combination of 
feature subsets and hyperparameters without 
requiring manual intervention. PSO operates by 
simulating the social behavior of particles (agents) 
that explore the solution space. Each particle in the 
swarm represents a candidate solution comprising 
both selected features and associated 
hyperparameters, encoded as a hybrid vector given 
by: 

𝑉 = [𝑓1, … 𝑓13, 𝐿, 𝑚1, 𝑅, 𝐵, 𝑎(𝑧)]----- (13) 

Where, ‘𝑓’ denotes the features, ‘𝐿’ is the number 
of hidden layers and number of neurons/ layer is 
given as, ‘𝑚1’, ‘𝑅’ is the learning rate, ‘𝐵’ is the batch 
size and ‘𝑎(𝑧)’ is the activation function. 

The hyperparameters of PSO are chosen as swarm 
size of 30 particles, 50 iterations, a linearly decreasing 
inertia weight w starting with 0.9 and decreasing to 
0.4 and acceleration coefficients 𝑐1 = 1 𝑎𝑛𝑑 𝑐2 = 1.5 
to strike a balance between exploration and 
exploitation. Such structure would provide an 
effective discretization of the discrete-continuous 
solution search space. The hyperparameters tuning 
process based on PSO has a number of benefits: it 
does not require a costly grid search, is dynamic 
towards the particulars of the dataset, is 
computationally cheap, and creates a very balanced 
model in terms of accuracy, speed, and 
generalizability. This way, it then allows a complete 
automation of the tuning of hyperparameters, which 
is adaptive and efficient in the proposed DL-HDP 
classification framework. 

3.6. Model Training and Performance Evaluation: 

The last stage is model training whereby using the 
optimal hyperparameter and feature set under which 
the model was trained during the optimization 
process, the model is trained based on the identified 
optimal solution. Training process will involve 80 
percent of the data and will be split into a training set 
with the other 20 percent being withheld such that it 
can be used to test the models performances on the 
test set. The Adam optimizer with adaptive learning 
rate is performed against the weight update and the 
update is done in accord with the standard Gradient 
Descent. 

𝜃 = 𝜃 − 𝑅
𝜕𝐿

𝜕𝜃
 ------(14) 

In which the 𝜃 is the model parameters, 𝑅 is the 
learning rate which is optimized using PSO, and 𝐿 is 
the binary cross-entropy loss function. The training is 
limited up to 100 epochs, and early stopping 
behavior is used to avoid overfitting the model: 
training is stopped, in case the validation loss does 
not reduce within 15 consecutive epochs. The 
number of the processed samples between successive 
weight updates, batch size B, which is also chosen 
through PSO, depends on the size of the batch. 

To assess the performance, various classification 
measures will be calculated using the unseen test set 
with an aim of measuring performance and stability 
of the model. Accuracy (Acc) is the first measure 
which reports on overall fundamental correctness of 
the classification, and is defined as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 -----(15) 

To further evaluate the predictive capability, 
Precision (Prec) and Recall (Sensitivity) are 
computed, given by 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 -----(16) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Additionally, the F1-Score is used to capture the 
balance between precision and recall, formulated as 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 -------(17) 

This overall assessment shows that the proposed 
DL-HDP model has good generalization ability to 
unseen data, which proves to have high predictive 
accuracy, optimal tradeoff of between precision and 
recall, and outstanding discrimination. 

4. RESULTS AND DISCUSSION 

An experimental analysis of the proposed 
Enhanced Deep Learning-based Heart Disease 
Prediction Model (DL-HDP) was conducted with the 
use of a typical computing environment. All the 
experiments were performed on a computer with an 
Intel Core i7-12700 central processing unit at a rate of 
2.10 GHz, 32 GB of Random Access Memory and an 
NVIDIA GeForce RTX 3060 with 12 GB VRAM. The 
software environment had Python 3.10 as the major 
programming language, TensorFlow 2.13 and Keras 
as the deep learning frameworks. 

To test models, UCI Cleveland Heart Disease 
Dataset was used with its 303 records of patients that 
are described with 14 attributes that are of clinical 
importance. The target variable was categorical, 
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which refers to having or not having heart disease. In 
order to guarantee data quality, some preprocessing 
techniques have been used such as the imputation of 
the mean value of missing continuous values and the 
mode imputation of the categorical features. 
Categorical variables were represented by labels and 
all the numerical attributes were transformed into 
absolute range between 0 and 1 by means of Min-
Max scaling. The data was divided into training and 
test sets with the ratio of 80:20 by the stratified 
sampling, which keeps the balance of classes that was 
moderately unbalanced with approximately 54 
positives and 46 negatives. 

To confirm the work of DL-HDP model proposed, 

the results with conventional machine learning 
algorithms are compared to them, such as Support 
Vector Machine (SVM), Random Forest, MLP, k-
Nearest Neighbors (k-NN) with a constant value of k 
= 5, and a classic Multi-layer Perceptron (MLP) 
model without PSO optimization. Here, Table 1 
presents the PSO Parameter Settings for DL-HDP. 
Standard classification metrics (on the test data) were 
used to evaluate the performance, i.e., accuracy, 
precision, recall (sensitivity) and F1-score. Also, 
calculation of the Area Under the Receiver Operating 
Characteristic Curve (AUC) was carried out to 
evaluate the discriminative power of the model. 

Table 1: PSO Parameter Settings for DL-HDP. 
Optimization Parameter Value / Configuration 

Swarm Size (Number of Particles) 30 particles 

Number of Iterations (Cycles) 50 cycles 

Inertia Weight (w) Linearly decreasing from 0.9 to 0.4 

Acceleration Coefficients (c1, c2) c1 = 2.0, c2 = 2.0 

Particle Encoding Hybrid vector: binary (feature selection) + continuous (hyperparameter tuning) 

Fitness Function Minimization of classification error using 5-fold cross-validation 

 
Figure 2: Confusion Matrix. 

The confusion matrix of the proposed DL-HDP 
model (Figure 2) receives really great results with 92 
true negative and 94 true positive and only 8 false 
positive and 6 false negative were obtained. This 
means that it is very accurate and classified well and 
just shows the fact that the model has a high 
capability of diagnosing the normal and heart disease 
cases accurately and with minimal error. 

Based on Figure 3, the ROC curve which could be 
used to demonstrate the overall classification 
performance of the proposed DL-HDP model attains 
Area Under Curve (AUC) value of 0.924. This high 
AUC level shows that the model has large potential 

of distinguishing the patients with and without the 
heart disease. The curve illustrates that the model is 
one with high true positive rates (sensitivity) at low 
false positive rates and this represents a good 
identification capacity and the number of misleading 
identifications is low. 

 
Figure 3: ROC Curve of the Proposed DL-HDP. 

The proposed DL-HDP model has some 
important benefits compared to traditional methods 
of machine learning when applied to the prediction 
of heart disease. To begin with, it incorporates 
Particle Swarm Optimization (PSO) in feature 
selection as well as in the adjustment of hyper 
parameters, thereby eliminating duplicating features 
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and automatically determining the best model 
parameters with no intervention. That results in 
better accuracy and generalization. 

 
Figure 4: Accuracy Rate Comparisons. 

Second, Multilayer Perceptron (MLP) model 
allows achieving a more complex, non-linear pattern 
in the clinical data using the model, which is more 
sophisticated in terms of prediction. The model 
recorded the highest possible accuracy of 93.67 
percent, with the highest margin of 6-10 percent over 
the conventional models of Random Forest, SVM, k-
NN and standard MLP as given in Figure 4. Also the 
model had a smoother convergence and had smaller 
fluctuations between the iterations therefore more 
stable. The joint advantages of automated 
optimization, high accuracy, minimized 
computational load, and unvaried performance turn 
DL-HDP model into a robust and effective tool of 
early and accurate detection of heart disease in the 
health care context. 

 
Figure 5: Precision Rate Evaluations. 

The comparison graph of precision in Figure 5 
reveals that proposed DL-HDP model provides 
better accuracy compared to baseline models with 
maximum precision of 93.25 at 100 iterations. 

Conversely, Random Forest reached 86.0, SVM 
reached 85.0, k-NN reached 82.7, and MLP reached 
82.3, but all were clearly on the ups and downs. DL-
HDP model showed gradual upward trend with little 
variance, which keeps its precision benefit at 7 11 
percent of traditional methods. It shows the good 
ability of the model to pick true positive cases of heart 
diseases and minimizing false positive cases. 

 
Figure 6: Recall Based Analysis. 

The comparison graph on recalls in Figure 6 
eloquently depicts the betterness of the proposed DL-
HDP model, having a maximum recall of 94.02 
percent after 100 iterations. Comparatively, the 
Random Forest yields 86.7%, SVM 85.6%, k-NN 
83.3% and MLP 83.1% and it is observed that the 
results vary within considerable margins according 
to the iterations. DL-HDP shows a score of 
maintaining higher recall levels with the least 
variance of more than 7.3 percentage higher than the 
nearest model. This implies that the model has a high 
level in terms of accurate diagnosis of cases of heart 
disease with substantial decrease in false negatives as 
compared to conventional classifiers. 

 
Figure 7: F1-Score Comparisons. 

Comparison graph between the two of the F1-
score in Figure 7 illustrates the effectiveness of the 
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proposed DL-HDP model where it basically reached 
93.43 percent F1-score at 100 iterations. Random 
Forest, in turn, attained up to 86.3%, SVM 85.3%, k-
NN 83.0%, and MLP 82.7%, and differences are 
observed between the approaches. The DL-HDP also 
exhibited a steady and constantly growing trend 
with an improvement of 7.13 percent compared to 

the closest baseline. This shows that the model has a 
good capacity to balance between precision and 
recall, hence more reliable and better heart disease 
classification compared to the traditional models. 
The overall comparison results are given in the Table 
2. 

Table 2: Overall Evaluation Results. 
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

MLP 83.50 82.30 83.10 82.70 

SVM 86.40 85.00 85.60 85.30 

k-NN 84.00 82.70 83.30 83.00 

Random Forest 87.10 86.00 86.70 86.30 

Proposed DL-HDP 93.67 93.25 94.02 93.43 

In comparative analysis of accuracy, precision, 
recall and F1-score, the proposed DL-HDP model 
outperforms all baseline models with the entire 
highest score in all evaluation measures. In 
particular, the DL-HDP showed the ultimate 
accuracy of 93.67%, precision of 93.25%, recall of 
94.02%, and F1-score of 93.43 that is more 
outstanding compared to the classical models like 
Random Forest, SVM, k-NN, and MLP valued 82 to 
87. The DL-HDP exhibited a stable and steady 
improvement performance with few fluctuations and 
thus, it is more learning efficient, has a greater 
generalization power, and also, a strong classification 
confidence to predict heart diseases. 

5. CONCLUSION AND FUTURE WORK 

The contribution of this paper is to introduce an 
Enhanced Deep Learning-based Heart Disease 
Prediction (DL-HDP) model, which uses a feature 
learning characteristic of the Multilayer Perceptron 
(MLP) and the optimization performance of the 
Particle Swarm Optimization (PSO) to accomplish 
high precision prediction. DL-HDP model uses an 
algorithmic nature that follows data preprocessing, 

automatic feature selection, and hyper parameter 
optimization. The first step is to perform processes 
that guarantee quality inputs to clinical data, 
including imputation, encoding or normalization. 
PSO then would be used to decide the most Relevant 
clinical features as well as essential hyperparameters 
that included the number of hidden layers, neurons, 
the learning rate, and activation functions. The MLP 
classifier is run in optimized form on the cleaned 
dataset resulting in better generalization and cutting 
on the computation requirements. Severe analysis on 
UCI Cleveland Heart Disease Dataset reinforces the 
fact that the model proposed will perform better than 
the traditional machine learning algorithms by 
providing high values of accuracy (93.67%), precision 
(93.25%), recall (94.02%), and F1-score (93.43%). The 
performance of the combination of the deep learning 
and metaheuristic optimization proves the efficiency 
of the idea to provide a complete, precise, and 
scalable framework to predict heart diseases. 

The next steps will be to expand the DL-HDP 
model to multi-class heart disease predictions and 
add explainable AI to the models to increase model 
transparency and clinical decision support. 
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