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ABSTRACT

The role of heart disease prediction in healthcare is especially important, as it allows taking timely actions
and making informed decisions. This paper has proposed an Enhanced Deep Learning-based Heart Disease
Prediction Model (DL-HDP) that integrates optimization via Particle Swarm Optimization (PSO). The model
is based on the deep learning model, namely Multilayer Perceptron (MLP), to classify heart disease with the
use critical medical features like age, blood pressure, cholesterol levels, and ECG results. It uses PSO
optimization algorithm to tune hyperparameters and select features and optimizes hyperparameters to tune
the number of neurons, learning rates, and activation functions to improve the performance of the model. The
performance of DL-HDP on experimental data proves that it is much more accurate, precise, and recalls than
any traditional machine learning algorithms, proving the potency of deep learning with nature-inspired
optimization. This is a valid method that has resulted in a reliable and effective tool in identifying heart
disease early on, which is in aid of informing better clinical practice.

KEYWORDS: Heart Disease Prediction, Deep Learning, Particle Swarm Optimization (PSO), Multilayer
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1. INTRODUCTION

Cardiovascular disease (CVD) or heart disease is
one of the gravest health issues globally and millions
of people die due to this disease each year. Recent
statistics provided by the World Health Organization
(WHO) point out that heart disease is the cause of
death in majority of the world deaths with an
equivalent of 17.9 million deaths being recorded
annually amounting to about 32% of global deaths
[1]. Heart disease is becoming one of the most
common ailments affecting people due to various
reasons including lack of exercise, poor eating habits,
stress, smoking and family history [2]. Such a
frightening situation has motivated the health care
fraternity to find uplifted, precise and timely
diagnostic system to forecast heart disease and take
right medical actions in time.

Conventional practices of diagnosing diseases are
intensive in the wuse of clinical exams like
Electrocardiograms (ECG), treadmills,
echocardiograms and the medical history of the
patient [3]. Although such techniques are effective
they are very operator and operator-dependent and
therefore subject to delays in diagnosis and
diagnostic variation in the case of healthcare
professionals. Additionally, the high rate at which
data involving patients undergoing clinical test is
being created opens a chance to create data-driven
predictive systems that could help in the accurate
detection of heart diseases [4]. Take advantage of
artificial intelligence (AI) and primarily machine
learning (ML) and deep learning (DL) technologies as
one of the potential solutions in this regard that can
automatically identify the complex patterns through
the big data and provide only fact-driven decisions
that are not biased [5].

Some of the ML algorithms used over the past few
years to forecast heart disease include Decision Tree,
Random Forest, Naive Bayes, Support Vector
Machines (SVM) and k-Nearest Neighbors (k-NN)
algorithms [6]. Such methods make use of the
historical clinical records of the patients which
include their age, blood pressure, cholesterol,
maximum heart rate, and ECG findings in order to
categorize the heart disease or lack thereof.
Nevertheless, traditional ML algorithms have
specific drawbacks. They usually need manual
selected characteristics, deal with too much pre-
processing data, and can hardly detect non-linear
and high-dimensional relationships in clinical data
sets [7]. In addition, the functioning of these
algorithms can strongly depend on feature
engineering that usually requires specific domain

knowledge and can result in human bias [8].

In a bid to address these shortcomings, deep
learning (DL), a subfield of machine learning has
attracted a lot of attention. Deep learning models
particularly Multilayer Perceptrons (MLP) have
proved to perform better because they automatically
learn hierarchical feature representation of raw data
without involving human feature engineering [9].
The high suitability of MLP in the medical diagnostic
application is due to a capacity of modeling complex,
non-linear patterns because of having multiple layers
of interconnected neurons [10].

Though DL models have their benefits, the choice
of the best hyperparameters is one of the most
important tasks. The number of the hidden neurons,
number of layers, learning rates, batch sizes and
activation functions are hyperparameters that
significantly influence the performance of the models
[11]. Poor hyperparameter tuning may cause the
problem of underfitting, overfitting, low-speed
convergence, and low overall accuracy. Adjacent
hyperparameter tuning is a cumbersome, time-
fraudulent and nonviable procedure particularly on
large records and complicated models [12]. As such,
there has been urgency in incorporating automated
optimization methods which will be able to conduct
searches of optimal hyperparameters in a
computationally effective manner.

Particle Swarm Optimization (PSO) is a well-
known metaheuristic algorithm based on population
found in bird flocking and fish schooling models,
which has first appeared simple, converges quickly
and is insensitive to the global optimization
problems [13]. PSO was well used in other
optimization tasks: feature selection and set of
hyperparameters in ML and DL applications [14].
Having incorporated PSO with deep learning
frameworks, both feature subsets and network
hyper-parameters can be optimized to allow the
predictive performance of DL models to diagnose
heart diseases to be enhanced.

This study hypothesizes an Enhanced Deep
Learning (DL) based Heart Disease Prediction (HDP)
framework, which is a synergetic integration of
feature learning ability of Multilayer Perceptron
(MLP) and the optimization capability of Particle
Swarm Optimization (PSO). This paper offers a
summary of the main contributions of this research
as below

i. A hybrid DL-HDP is formulated, where an

MLP model is used in predicting the heart
disease using clinically sensitive characteristics
including age, resting blood pressure, serum
cholesterol, fasting blood sugar,
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electrocardiogram results, maximum heart
rate, and exercise-induced angina.

ii. PSO is applied to do feature selection and
hyperparameter tuning concurrently. This
simplifies calculations by drop off redundant
and less informative features and shifts hyper
parameters such as number of neurons,
learning rate and activation functions to have
better classification abilities.

iii. The proposed model is assessed on well-
known publicly available data of heart
diseases, and its grade is cross-referenced with
common machine learning classicians like
SVM, Decision Trees, k-NN, and standard
MLP without improved implementation. The
proposed DL-HDP has comparable better
performance at the levels of accuracy,
precision, recall, and F1-score consistently.

iv. The study approves the practical utility of
PSO-based DL models in practice applications
in healthcare settings and presents a reliable,
scalable, and interpretable diagnostic decision-
support system that has the possible potential
of improving clinical decision-making and
alleviating diagnostic errors.

The rest of the paper would flow as follows: In
section I, a concise literature review of existing
approaches in the prediction of heart diseases using
both machine learning and deep learning as well as
using optimization would be provided. Section III
explains the procedure, i.e., information about the
dataset, dataset pre-processing, MLP model
architecture, and the application of the PSO
algorithm to the settings of the features and
hyperparameters. Section 1V talks on the discussion
of the experiment design, evaluation and the baseline
techniques applied in comparing the performance.
Section V draws a conclusion of paper summarizing
the major findings and highlighting the future
directions of research on the enhancement of
intelligent heart diseases predicting systems.

2. RELATED WORKS

Over the past few years, a quick growth has been
observed in the use of machine learning (ML) and
deep learning (DL) strategies in healthcare and
specifically in predicting heart diseases. Several
authors have searched the ML classifier, Decision
Trees, Support Vector Machines (SVM), k-Nearest
Neighbors (k-NN), and Random Forest in predicting
heart-related disorders. As an example, a
comparative study of Kumar et al. [15] indicated that
ensemble training techniques such as Random Forest
tend to beat single classifier due to its ability to

improve the overall performance of a classification
task of the binary classification of heart diseases.

The models of deep learning gained more and
more popularity due to a better ability of features
abstraction. Hasan and Mustafa [16] placed an MLP-
based model to detect cardiovascular diseases and
proved that compared to conventional ML
applications, the accuracy increased significantly. In
the same manner, Murugan et al. [17] used a
framework based on Convolutional Neural Network
(CNN) in structured clinical data and it resulted in
high precision in the heart disease classification. With
a view to increasing the predictive performance, a
number of authors have experimented with the so-
called hybrid techniques, wherein both ML/DL
methods and optimization algorithms are used
together. Sahu et al. [18] utilized a deep neural
network optimized by PSO in making heart disease
predictions and managed to enhance the accuracy of
their classification results through hyperparameters
tuning and feature selection. Yadav and Singh [19]
reviewed the situation of PSO-based feature selection
regarding the healthcare field and emphasized the
benefits of such application, implying reducing
dimensionality and achieving high classification
results.

There are also other metaheuristic rules that have
been written out to enhance the results of the
prediction. Mahajan et al. [20] employed Genetic
Algorithm (GA) in the selection of features, hence
better generalization of the model. Similarly, Siva et
al. [21] incorporated a deep learning classifier into
Whale Optimization Algorithm (WOA) achieving a
competitive performance on the Cleveland dataset.
In the recent past, there has been emergence of more
complex hybrid frameworks. A hybrid PSO-MLP
model of Kumari and Krishna [22] and their
performance on various machine learning classifiers
was proved to achieve better results than other
algorithms (in terms of the precision and recall
scores). Chen et al. [23] applied PSO to neural
architecture search in MLP models, where
hyperparameter optimization has been automated,
and more time to train has been achieved. A number
of studies have also indicated the importance of
feature engineering and data pre-processing. A
detailed review of the feature selection in healthcare
applications was given by Mukherjee and Saha [24]
with the focus on the necessity to consider it as a
solution to lessen complexity in models and improve
their interpretability. Priyanka and Gowtham [25]
explored pre-processing and its effect on the
classification of ML models to predict cardiovascular
diseases.
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The universal relevance of the deep neural
networks in the medical field has also stretched to the
multi-class classifications cases. The study by Sharma
et al. [26] constitutes a hybrid system based on CNN-
LSTM to design a multi-class classification model to
anticipate the different levels of heart disease. In a
similar manner, Joshi et al. [27] used a deep learning
pipeline consisting of both CNN and Bi-LSTM
models to get a considerable boost in the process of
deep learning in both binary and multi-class heart
disease classification tasks. The new trend is the
practice of explainable Al (XAI) techniques. Pathan
and Patil [28] combined explainability models like
the SHAP values with ML classifiers, giving visibility
into the predictive results in heart disease diagnosis.
Lastly, Rathore et al. [29] proposed an in-depth
survey of deep learning network frameworks on
predicting cardiovascular disease that highlights the
emerging trends such as hybrid optimization
algorithm and more understandable models. The
reviewed literature is supportive in the fact that deep
learning and optimization algorithms are effective in
prediction of heart diseases but more can be added in
terms of increasing the accuracy of the models,
efficiency of feature selection, and model
explanations. This stimulates the advancement of the
proposed PSO-optimized deep learning framework
in robust categorization of heart diseases.

3. PROPOSED METHODOLOGY
The proposed and a model of the Enhanced Deep

Learning Heart Disease prediction (DL-HDP) is
presented and applied on the popular UCI Cleveland
Heart Disease Dataset [30]. The model aims to
overcome the shortcomings of the conventional
diagnostic systems through automatic feature
selection, hyperparameter optimization, and use of
deep neural network classifier allowing the
development of an accurate and generalizable heart
disease prediction system. The specified approach
includes five key steps as follows (i) data pre-
processing, (ii) feature selection using PSO (iii)
classification using MLP, (iv) PSO-driven
hyperparameter tuning and (v) Model Training and
Result Evaluations evaluation. System architecture
and computational pathway are explained below.

3.1. Dataset Description

The experiments are on the cleveland Heart
Disease Dataset, downloadable at the UCI Machine
Learning Repository [30]. Thanks to the quality of
clinical records and diagnostic relevance, this dataset
has been frequently utilized in studies on
cardiovascular diseases prediction. The original
dataset consists of 303 patient records each of which
are characterized by 76 medical attributes. But
according to the usual procedure in literature, 14
most important features are to be used in the model
because these features have already been reported as
being of clinical significance in heart disease
prediction.

Data Pre-processing

Dataset Replacing

Missing Values

Label Encoding

Normalization

Feature Selection using PSO

Particle Encoding

Classification using MLP

Fitness
Evaluation

PSO Velocity and
Position Updates

Hyperparameter Tuning

v

Model Training and Performance Evaluation

Figure 1: Workflow of Proposed Model.

The Attributes are as follows

i. Numerical Attributes age, resting blood
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pressure (trestbps), serum cholesterol (chol),
maximum heart rate achieved (thalach),
oldpeak (ST depression).

ii. Categorical Attributes: sex, type of chest pain

(cp), fasting blood sugar (fbs), resting
electrocardiographic ~ findings  (restecg),
exercise-augmented angina (exang), ST

segment slope (slope), the amount of major
vessels colored during the fluoroscopy (ca),
thalassemia (thal).

iii. Target Variable The diagnosis of heart disease

(0 =no, 1 =yes).

The distribution of the target classes was around
54% positive (presence of heart disease), and 46%
negative and hence the slight imbalance in classes has
been taken care of during training through stratified
sampling technique. The work flow of the proposed
model is presented in Figure 1.

3.2. Data Pre-processing

Machine learning/deep learning requires the data
quality, stability and consistency by performing
preprocessing on the data. Missing values, the
presence of mixed data types (categorical,
numerical), and skewed features (feature scales) may
be considered examples of data inconsistencies that
may appear in the raw medical data (especially in
clinical repositories, such as the UCI Cleveland Heart
Disease Dataset [30]) and which affect the model
performance negatively, unless dealt with
appropriately.

i. The dataset contains missing or undefined
entries in features such as ca (number of major
vessels) and thal (thalassemia condition).
Missing continuous features are replaced
using mean imputation.

1
Aimputed = ™ ﬁlAi ------ (1)

Categorical features are filled using mode
imputation, which replaces missing values with the
most frequent category.

ii. To handle categorical attributes such as sex, cp,
fbs, restecg, exang, slope, ca, and thal, Label
Encoding is applied to transform categories
into integer codes, preserving ordinal
relationships if applicable.

Encoded(a) ={0,1,2,3, ...,k — 1}----—-- )

iii. Features with different value ranges are
normalized using Min-Max Scaling to
standardize the input range between [0,1].

A—Amin
A lmin €)

A =
scaled Amax—Amin

Normalization prevents dominance of any feature
due to higher magnitude values and stabilizes neural
network convergence.

iv. It splits the dataset into two parts in a way that
training and evaluation of the model can be
easily carried out. In particular, 80 percent of
the data will go into the training set that will be
employed to train the machine learning or
deep learning models, and the rest of the data,
20 percent, will be designated the testing set
which will be used to assess the model
performance using unseen data. The class
distribution is processed as,

|Dclass=1 |D%lass:1|

Train ~ est (4)
[Drrainl [Drestl

3.3. Feature Selection Using Particle Swarm
Optimization (PSO)

The crucial downstream process in any predictive
model-building exercise is its feature selection,
especially when dealing with medical datasets where
we might have many redundant or irrelevant
features that tend to produce an over-fitting model,
slow the computation procedure, and result in
overall poor classification. The DL-HDP model
attributes the automatic selection of this most
discriminative subset of the original 13 clinical
attributes to the standard Particle Swarm
Optimization (PSO).

a. Particle Encoding Every particle is one
possible answer to a solution in the feature
space in PSO. In the feature selection
technique, the particles are initialized and
represented by binary particle vector.

pP= [fll "'lf13] _____ (5)

Where, f i=1, denotes that the i“th feature is
chosen and f i=0, denotes it is excluded. Such
representation converts the problem of feature
selection into a combinatorial optimization task of
finding the best in terms of binary configuration.

b. Fitness Evaluation A fitness function is used
to drive the optimization, in which a MLP is
trained on the features selected by a particle,
and the correct classification file at the end of
the MLP is evaluated. The fitness function tries
to optimize classification error and implicit
(unintentionally) optimize the number of
features.

TP+TN

Fitness(P) =1 ———--
TP+TN+FP+FN

-(6)

Where,
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TP=true positives,
TN=true negatives,
FP=false positives,
FN=false negatives.

c. PSO Velocity and Position Updates In the
Particle Swarm Optimization (PSO) algorithm,
the velocity and position of each particle are
iteratively updated using specific parameters
that guide the search process towards optimal
solutions. The velocity of a particle, denoted as

vi(t) represents the rate and direction of
movement in the feature space at iteration ¢,

while xi(t) denotes the particle’s current
position corresponding to a candidate feature
subset. The inertia weight (w) controls the
momentum of the particle, balancing global
and local search; a higher www promotes
exploration of the search space, whereas a
lower www encourages exploitation near the
current position. The cognitive coefficient (c;)
influences the particle’s tendency to return
towards its own personal best position (Pyes;),
enhancing individual learning. The social
coefficient (c,) governs the attraction towards
the global best position (gpes;) discovered by
the entire swarm, promoting collective
learning. Additionally, two random numbers
r; and 1,, sampled from a uniform distribution
between 0 and 1, introduce stochasticity into
the wupdate process, ensuring diverse
exploration and preventing premature
convergence. Together, these parameters allow
the swarm to effectively balance exploration
and exploitation, leading to an efficient search
for the optimal subset of features in high-
dimensional feature spaces.

1
Vi(H )= w. vi(t) + .1y (Pbest - xi(t)) + C. 13 (gbest - xi(t)) """ @)

xi(t+1) _ xi(t) + 17(t+1) _____ (8)

i
Here, the continuous x; is converted into binary
selections using sigmoid transformation.

1 if S(x) >05

1
S(x; == ]Ji =
@) = o= fi {O Otherwise

-0)

3.4. Classification using MLP

In the proposed model, the Multilayer Perceptron
(MLP) is employed as the deep learning classifier to
perform binary classification tasks after the optimal
feature set has been selected.

The MLP refers to a multi-layered, feed-forward
and fully connected neural network who holds the
name due to its flexibility and ability to capture
complicated patterns in data. The MLP architecture

is structured to have three principal parts and these
are the input layer, the hidden layer and the output
layer. The input layer shall be formed of 'm' neurons
where m is the number of features being used each
achieved as result of preprocessing and feature
selection processes. Subsequently, there is the 'H' in
hidden layers whereby the hidden layers consist of
'n_1'neurons, the ideal number of which is known by
hyperparameter optimization. The last ventilator is
an output layer that consists of a single output
neuron using a sigmoid neuron activation method,
which is more suited to binary classification, and
gives a probability value of 0 to 1. The MLP operates
through a process called forward propagation, where
an input vector a € R¢ passes through the network
layers, producing intermediate activations and final
output. The computation within each layer follows
the equation:

zh = Whx®=D 4 ph xh = f(z)"-—-(10)

where W" and b" represent the weight matrix and
bias vector for the I layer, a7 is the activation from
the previous layer, and f(z) is the activation function
applied to introduce non-linearity. ReLU (Rectified
Linear Unit) is used as the activation function in
hidden layers, defined as f(z) = max (0,z), which
enhances the learning capability by avoiding
vanishing gradient issues. The final output is
computed using the sigmoid activation function in
the output layer:

1
1+e?

s(z) =

This function squashes the output into the range
(0, 1), which can be interpreted as the predicted
probability for the positive class.

To train the MLP, the model uses the Binary Cross
Entropy (BCE) loss function, which quantifies the
difference between the predicted probability p; and
the actual label p; for each instance. The loss function
is given by:

. ~ _
F=——%lilplog p + (1 —py) log(1 — p)]l—(12)

where N denotes the number of samples. This loss
function penalizes incorrect predictions more
heavily, ensuring the model learns accurate
probability distributions.

Overall, the MLP is chosen due to its strong
adaptability, efficiency in structured data
classification, and its compatibility = with
hyperparameter optimization techniques such as
Particle Swarm Optimization (PSO), allowing it to
achieve high classification accuracy in the proposed
framework.

----- (11)
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3.5. Hyperparameter Tuning Using PSO:

Hyperparameter tuning plays a critical role in
enhancing the performance of deep learning models,
especially in structured datasets where optimal
model configuration significantly affects
classification accuracy and generalization ability. In
this study, the proposed DL-HDP framework
integrates Particle Swarm Optimization (PSO) to
automatically identify the optimal combination of
feature subsets and hyperparameters without
requiring manual intervention. PSO operates by
simulating the social behavior of particles (agents)
that explore the solution space. Each particle in the
swarm represents a candidate solution comprising
both selected features and associated
hyperparameters, encoded as a hybrid vector given
by:

V =[fi, . fis, L,my, R, B, a(2)]----- (13)

Where, ‘f” denotes the features, ‘L’ is the number
of hidden layers and number of neurons/ layer is
given as, ‘'m;’, ‘R’ is the learning rate, ‘B’ is the batch
size and “a(z)’ is the activation function.

The hyperparameters of PSO are chosen as swarm
size of 30 particles, 50 iterations, a linearly decreasing
inertia weight w starting with 0.9 and decreasing to
0.4 and acceleration coefficients ¢; = 1 and ¢, = 1.5
to strike a balance between exploration and
exploitation. Such structure would provide an
effective discretization of the discrete-continuous
solution search space. The hyperparameters tuning
process based on PSO has a number of benefits: it
does not require a costly grid search, is dynamic
towards the particulars of the dataset, is
computationally cheap, and creates a very balanced
model in terms of accuracy, speed, and
generalizability. This way, it then allows a complete
automation of the tuning of hyperparameters, which
is adaptive and efficient in the proposed DL-HDP
classification framework.

3.6. Model Training and Performance Evaluation:

The last stage is model training whereby using the
optimal hyperparameter and feature set under which
the model was trained during the optimization
process, the model is trained based on the identified
optimal solution. Training process will involve 80
percent of the data and will be split into a training set
with the other 20 percent being withheld such that it
can be used to test the models performances on the
test set. The Adam optimizer with adaptive learning
rate is performed against the weight update and the
update is done in accord with the standard Gradient
Descent.

oL
0 =6—R ——(14)

In which the 8 is the model parameters, R is the
learning rate which is optimized using PSO, and L is
the binary cross-entropy loss function. The training is
limited up to 100 epochs, and early stopping
behavior is used to avoid overfitting the model:
training is stopped, in case the validation loss does
not reduce within 15 consecutive epochs. The
number of the processed samples between successive
weight updates, batch size B, which is also chosen
through PSO, depends on the size of the batch.

To assess the performance, various classification
measures will be calculated using the unseen test set
with an aim of measuring performance and stability
of the model. Accuracy (Acc) is the first measure
which reports on overall fundamental correctness of
the classification, and is defined as

(TP+TN)
TP+TN+FP+FN

Accuracy = (15)

To further evaluate the predictive capability,
Precision (Prec) and Recall (Sensitivity) are
computed, given by

Precision = —— -----(16)
TP+FP
Recall = TP
T TP Y FN

Additionally, the F1-Score is used to capture the
balance between precision and recall, formulated as

PrecisionxRecall
F1=2x (17)

Precision+Recall

This overall assessment shows that the proposed
DL-HDP model has good generalization ability to
unseen data, which proves to have high predictive
accuracy, optimal tradeoff of between precision and
recall, and outstanding discrimination.

4. RESULTS AND DISCUSSION

An experimental analysis of the proposed
Enhanced Deep Learning-based Heart Disease
Prediction Model (DL-HDP) was conducted with the
use of a typical computing environment. All the
experiments were performed on a computer with an
Intel Core i7-12700 central processing unit at a rate of
2.10 GHz, 32 GB of Random Access Memory and an
NVIDIA GeForce RTX 3060 with 12 GB VRAM. The
software environment had Python 3.10 as the major
programming language, TensorFlow 2.13 and Keras
as the deep learning frameworks.

To test models, UCI Cleveland Heart Disease
Dataset was used with its 303 records of patients that
are described with 14 attributes that are of clinical
importance. The target variable was categorical,
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which refers to having or not having heart disease. In
order to guarantee data quality, some preprocessing
techniques have been used such as the imputation of
the mean value of missing continuous values and the
mode imputation of the -categorical features.
Categorical variables were represented by labels and
all the numerical attributes were transformed into
absolute range between 0 and 1 by means of Min-
Max scaling. The data was divided into training and
test sets with the ratio of 80:20 by the stratified
sampling, which keeps the balance of classes that was
moderately unbalanced with approximately 54
positives and 46 negatives.

To confirm the work of DL-HDP model proposed,

the results with conventional machine learning
algorithms are compared to them, such as Support
Vector Machine (SVM), Random Forest, MLP, k-
Nearest Neighbors (k-NN) with a constant value of k
= 5, and a classic Multi-layer Perceptron (MLP)
model without PSO optimization. Here, Table 1
presents the PSO Parameter Settings for DL-HDP.
Standard classification metrics (on the test data) were
used to evaluate the performance, i.e., accuracy,
precision, recall (sensitivity) and Fl-score. Also,
calculation of the Area Under the Receiver Operating
Characteristic Curve (AUC) was carried out to
evaluate the discriminative power of the model.

Table 1: PSO Parameter Settings for DL-HDP.

Optimization Parameter Value / Configuration
Swarm Size (Number of Particles) 30 particles
Number of Iterations (Cycles) 50 cycles
Inertia Weight (w) Linearly decreasing from 0.9 to 0.4
Acceleration Coefficients (c1, c2) c1=20,c2=20

Particle Encoding

Hybrid vector: binary (feature selection) + continuous (hyperparameter tuning)

Fitness Function

Minimization of classification error using 5-fold cross-validation
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Figure 2: Confusion Matrix.

The confusion matrix of the proposed DL-HDP
model (Figure 2) receives really great results with 92
true negative and 94 true positive and only 8 false
positive and 6 false negative were obtained. This
means that it is very accurate and classified well and
just shows the fact that the model has a high
capability of diagnosing the normal and heart disease
cases accurately and with minimal error.

Based on Figure 3, the ROC curve which could be
used to demonstrate the overall classification
performance of the proposed DL-HDP model attains
Area Under Curve (AUC) value of 0.924. This high
AUC level shows that the model has large potential

of distinguishing the patients with and without the
heart disease. The curve illustrates that the model is
one with high true positive rates (sensitivity) at low
false positive rates and this represents a good
identification capacity and the number of misleading
identifications is low.
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Figure 3: ROC Curve of the Proposed DL-HDP.

The proposed DL-HDP model has some
important benefits compared to traditional methods
of machine learning when applied to the prediction
of heart disease. To begin with, it incorporates
Particle Swarm Optimization (PSO) in feature
selection as well as in the adjustment of hyper
parameters, thereby eliminating duplicating features
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and automatically determining the best model
parameters with no intervention. That results in
better accuracy and generalization.
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Figure 4: Accuracy Rate Comparisons.

Second, Multilayer Perceptron (MLP) model
allows achieving a more complex, non-linear pattern
in the clinical data using the model, which is more
sophisticated in terms of prediction. The model
recorded the highest possible accuracy of 93.67
percent, with the highest margin of 6-10 percent over
the conventional models of Random Forest, SVM, k-
NN and standard MLP as given in Figure 4. Also the
model had a smoother convergence and had smaller
fluctuations between the iterations therefore more
stable. The joint advantages of automated
optimization, high accuracy, minimized
computational load, and unvaried performance turn
DL-HDP model into a robust and effective tool of
early and accurate detection of heart disease in the
health care context.

Precision (36}
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Figure 5: Precision Rate Evaluations.

The comparison graph of precision in Figure 5
reveals that proposed DL-HDP model provides
better accuracy compared to baseline models with
maximum precision of 93.25 at 100 iterations.

Conversely, Random Forest reached 86.0, SVM
reached 85.0, k-NN reached 82.7, and MLP reached
82.3, but all were clearly on the ups and downs. DL-
HDP model showed gradual upward trend with little
variance, which keeps its precision benefit at 7 11
percent of traditional methods. It shows the good
ability of the model to pick true positive cases of heart
diseases and minimizing false positive cases.
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Figure 6: Recall Based Analysis.

The comparison graph on recalls in Figure 6
eloquently depicts the betterness of the proposed DL-
HDP model, having a maximum recall of 94.02
percent after 100 iterations. Comparatively, the
Random Forest yields 86.7%, SVM 85.6%, k-NN
83.3% and MLP 83.1% and it is observed that the
results vary within considerable margins according
to the iterations. DL-HDP shows a score of
maintaining higher recall levels with the least
variance of more than 7.3 percentage higher than the
nearest model. This implies that the model has a high
level in terms of accurate diagnosis of cases of heart
disease with substantial decrease in false negatives as
compared to conventional classifiers.
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Figure 7: F1-Score Comparisons.

Comparison graph between the two of the F1-
score in Figure 7 illustrates the effectiveness of the
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proposed DL-HDP model where it basically reached
93.43 percent Fl-score at 100 iterations. Random
Forest, in turn, attained up to 86.3%, SVM 85.3%, k-
NN 83.0%, and MLP 82.7%, and differences are
observed between the approaches. The DL-HDP also
exhibited a steady and constantly growing trend
with an improvement of 7.13 percent compared to

the closest baseline. This shows that the model has a
good capacity to balance between precision and
recall, hence more reliable and better heart disease
classification compared to the traditional models.

The overall comparison results are given in the Table
2.

Table 2: Overall Evaluation Results.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
MLP 83.50 82.30 83.10 82.70
SVM 86.40 85.00 85.60 85.30
k-NN 84.00 82.70 83.30 83.00
Random Forest 87.10 86.00 86.70 86.30
Proposed DL-HDP 93.67 93.25 94.02 93.43

In comparative analysis of accuracy, precision,
recall and Fl-score, the proposed DL-HDP model
outperforms all baseline models with the entire
highest score in all evaluation measures. In
particular, the DL-HDP showed the ultimate
accuracy of 93.67%, precision of 93.25%, recall of
94.02%, and Fl-score of 9343 that is more
outstanding compared to the classical models like
Random Forest, SVM, k-NN, and MLP valued 82 to
87. The DL-HDP exhibited a stable and steady
improvement performance with few fluctuations and
thus, it is more learning efficient, has a greater
generalization power, and also, a strong classification
confidence to predict heart diseases.

5. CONCLUSION AND FUTURE WORK

The contribution of this paper is to introduce an
Enhanced Deep Learning-based Heart Disease
Prediction (DL-HDP) model, which uses a feature
learning characteristic of the Multilayer Perceptron
(MLP) and the optimization performance of the
Particle Swarm Optimization (PSO) to accomplish
high precision prediction. DL-HDP model uses an
algorithmic nature that follows data preprocessing,
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