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ABSTRACT

The paper reveals that while no single model consistently outperforms across different conditions, the
integration of trading volume and uncertainty measures significantly enhances forecasting accuracy. These
findings not only challenge traditional forecasting paradigms but also demonstrate the robust potential of
combining Al with traditional statistical methods. The paper emphasizes the critical role of adaptability and
innovation in algorithmic forecasting, offering substantial implications for both financial market theory and
practice. Building on insights from market microstructure theory, i introduce volatility- and volume-based
exogenous variables into neural network architectures to capture the interplay of risk, liquidity, and potential
investor sentiment effects. Our exhaustive modeling suite includes ARIMA-type approaches, exponential
smoothing, and hybrid Al-statistical ensembles. Forecast performance is assessed through established error
metrics (ME, MAE, RMSE, MPE, MAPE, MASE) and further evaluated by a simple trading simulation to gauge
economic significance. Results show that no single model dominates uniformly: while simpler statistical
methods (e.g., Naive, SES) match or surpass more complex Al on very short horizons, neural networks
incorporating exogenous volume and high-low prices often outperform over weekly to quarterly periods. This
suggests mild market inefficiencies or delayed information assimilation at intermediate frequencies
particularly evident when volatility clustering or liquidity shifts are high. However, on very long horizons,
forecast advantages narrow, aligning with the notion of semi-strong market efficiency.

KEYWORDS: Forecasting, Financial Markets, Predictive Analytics, Time Series, Neural Networks, Artificial
Intelligence.
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1. INTRODUCTION

This paper compares four main forecasting
approaches using both statistical techniques and Al,
testing their accuracy on FTSE 100 companies. Data
collected includes opening share price, closing share
price, high and low price, adjusted closing price, and
trading volume, though the closing share price is the
central variable in the tests. This paper investigates
the longstanding debate on whether artificial
intelligence (AI) methods or traditional statistical
techniques offer superior predictive power in
financial markets, particularly under varying market
efficiency conditions. I employ an extensive dataset
of 18 FTSE 100 companies spanning 20 years, testing
30 distinct forecasting models across multiple
frequencies (daily, weekly, monthly, quarterly,
yearly) and horizons (short- through long-term). In
terms of economic relevance, selected Al-driven
strategies yield notable improvements in risk-
adjusted returns (5-10% annualized), underscoring
the value of integrating microstructure-informed
signals. These findings advance forecasting research
by demonstrating the nuanced interactions between
frequency, horizon, and exogenous risk factors, and
offer practical guidance to traders seeking robust yet
flexible predictive frameworks.

Four unique tests address horizon forecasting:

1. Test 1: Applies the 80/20 rule (80% training

data, 20% testing).

2. Test 2: Uses the first 100 data points for
training, then continuously adds one new data
point before re-forecasting.

3. Test 3: Same as Test 2 but includes new High
and Low prices inputted into the neural
network.

4. Test 4: Same as Test 2 but introduces trading
volume as an exogenous variable in the neural
network.

Hybrid functions (combining two methods) were
also examined to see if they improved forecasting
accuracy. With horizon analysis, the paper explores
how forecasting performance changes at different
time spans, testing daily, weekly, monthly and yearly
frequencies with multiple horizons. These horizons
align with trading intervals, such as daily, weekly,
monthly, quarterly and yearly cycles. Understanding
how horizon lengths affect accuracy is crucial, as
some methods perform better in the short term while
others excel in the long term. Examining input
variables in neural networks is similarly important
appropriate selection and training can significantly
enhance  forecasting  outputs.  Furthermore,
uncertainty and volatility, combined with varying
data ranges, shape forecasting accuracy. GARCH-

type models are often used to study volatility, while
global economic policy uncertainties may also spill
over locally. This understanding of volatility,
uncertainty, and data ranges demonstrates that
multiple factors affect forecasting accuracy.

The overarching aim was to determine which
forecasting methods produced the most accurate
predictions based on a range of error measures (ME,
RMSE, MAE, MPE, MAPE, MASE) and different
modeling approaches. A special focus was placed on
several variants of neural network-based approaches
(collectively referred to as “Nymphy”), including
those incorporating exogenous variables such as the
High and Low prices alongside the Close price. These
are contrasted with more conventional statistical
forecasting methods such as ARIMA variants, Naive
forecasts, Exponential Smoothing (SES and Holt-
Winters), TBATS, BATS, and the THETAF method. In
many cases, comparisons revolve around how well
these methods perform across short and long
horizons (ranging from 1-step-ahead up to 22-steps-
ahead for daily data, and similarly up to 12-steps-
ahead for weekly, monthly, and quarterly data).
Closing prices, High and Low prices are perspective
on the period of data, if the training data was yearly
price movement the CP, HP and LP would be the
assigned price for yearly period thus the closing price
of the financial year, highest price for the financial
year and low price of the financial year and that was
implemented for all periods.

2. BACKGROUND, RELEVANT
LITERATURE AND HYPOTHESIS
DEVELOPMENT

Financial market forecasting has been a research
focus for decades resulting in the development of
many methodologies to study price movements and
volatility and investor sentiment dynamics.
Traditional statistical approaches consisting of
ARIMA, GARCH together with exponential
smoothing methods continue to dominate
forecasting because of their straightforward nature
and easy interpretation. The forecasting models work
with static linear conditions despite falling short for
accurately predicting non-linear patterns seen in
financial data. Regression function is a basic analysis
to find the relationship between target and inputs,
and multiple linear regressions (MLR) are created as
benchmarks for other models Li, et al, (2024)

Powerful artificial intelligent technologies with
machine learning and especially neural networks
have become popular alternatives to analyze
complex nonlinear patterns in large financial datasets
because of their ability to sign intelligent predictions
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Ampountolas, (2023). According to Tealab et al
(2017) hybrid forecasting models demonstrate
potential in resolving data debates and boosting their
predictive identification across extensive periods of
time.

The literature now incorporates additional
explanatory variables as an advancement towards
better forecasting outcomes. These trading variables
jointly with high/low price movements and external
economic indicators supply supplemental data
which standard analytical models typically neglect.
Joseph et al. (2011) established internet search
intensity as an indicator of investor behavior which
forecasted trading volume and abnormal returns
while Wei et al. (2017) utilized GARCH-MIDAS
models to predict volatility based on global policy
uncertainty metrics. Shortages in datasets affect
forecasting models results in increased uncertainty
Khan, et al (2022)

Numerous gaps persist in being addressed within
the existing literature. Systematic comparison of
traditional methods to Al-based models consisting of
neural networks does not exist for a comprehensive
evaluation of multiple forecasting durations
alongside horizons. Researchers have neglected to
investigate the effects of incorporating exogenous
variables such as price and trading data into
synthetic intelligent forecasting models. Neural
network applications in financial forecasting remain
unclear because custom-built models lack explicit
documentation of design approaches when
researchers develop their own solutions instead of
using commercially available packages.

Multiple gaps in the literature are addressed
through systematic model comparisons using 30
forecasting techniques including ARIMA variants
and neural network-based approaches with
exponential smoothing methods across several time
horizons and frequencies. This paper adds new
knowledge to hybrid forecasting methodology
literature when it incorporates volatility-based along
with volume-based exogenous variables into neural
networks(Yu, 2020). The research explores both
practical and comparative aspects of artificial
intelligence models along with classic approaches
through an extensive evaluation of their real-world
financial market forecasting accuracy. Subset models
in Al such as machine learning and deep learning
algorithms have great potential in improving
forecasting Alroomi (2024).

2.1. Al Perspective & Implementation In
Financial Markets

Trading in financial markets encompassing

stocks, bonds, and currency exchanges has attracted
considerable attention from scholars. Various models
and algorithms, such as support vector regression
(SVR), artificial neural networks (ANN), GARCH
models, and hybrid approaches, have been employed
to predict and improve trading performance.

¢ SVR Models

Sermpinis et al. (2015) proposed a hybrid Rolling
Genetic Algorithm-Support Vector Regression (RG-
SVR) for trading the EUR/USD, EUR/JPY, and
EUR/GBP exchange rates, finding it outperformed
other established models in both trading efficiency
and statistical accuracy. Similarly, wSVR models
(weighted SVR) tested by Sermpinis et al. (2017)
showed better performance than traditional SVR
models, illustrating that nonlinear, non-stationary
financial markets often require more advanced
variants of SVR.

¢ GARCH Models & Pair Trading

Chen et al. (2017) applied smooth transition
GARCH models to a pair trading strategy in the U.S.
stock market and achieved significant annualized
returns. Pair trading is grounded in mean reversion,
allowing investors to exploit pricing disparities
between paired stocks.

e Multivariate Adaptive Regression & Linear

Regression Splines

Kurek (2014) studied equity block trades on the
Warsaw Stock Exchange using these techniques,
finding that block trades signal important
information to investors, resulting in positive or
negative abnormal returns.

¢ Neural Networks

Neural networks have been used to forecast GDP
growth rates Sokolov et al, (2016) emphasize that
well-selected inputs, technical or fundamental can
enhance the performance of neural network models,
often outperforming simpler statistical methods.

¢ Investor Sentiment

Investor behavior, as measured by internet search
intensity Joseph et al, (2011) or specific sentiment
indices Li, et al, (2014), can forecast trading volume
and abnormal stock returns. Online searches may
signal interest from less sophisticated investors,
influencing short-term trading patterns.

* Trading Activities & Macroeconomic

Forecasts

Chatterjee (2016) and Erdogan et al. (2014)
examined how stock market liquidity, volatility, and
returns predict recessions. Lower liquidity often
precedes recessions. Meanwhile, Arevalo et al. (2017)
studied a filtered flag pattern strategy in the Dow
Jones Industrial Average, finding dynamic technical
trading rules can outperform simple buy & hold
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strategies.

¢ Financial Networks & Trading Performance

Booth et al. (2014) showed that global financial
institutions, with larger networks, trade more
efficiently due to better access to order flows,
although local institutions learn and eventually
reduce this gap over time.

Overall, research confirms that AI and statistics-
based models, coupled with carefully selected input
variables, can substantially improve trading forecasts
in different market settings. Combining advanced
techniques (e.g.,, SVR, GARCH, neural networks)
with considerations of volatility, horizon length and
investor sentiment often produces more robust
results. Forecasting financial markets is a daunting
yet essential endeavor, as investors, analysts, and
policymakers seek to predict price trends, minimize
risks and optimize returns. Artificial Intelligence
undeniably has a significant impact on society across
various domains. Given the sheer complexity and
dynamism of the market, myriad methods have been
proposed: from statistical techniques such as
autoregressive models (AR, MA, ARMA, ARIMA,
GARCH, and their variants) to more recent artificial
intelligence (AI) methods including neural networks,
fuzzy logic, support vector machines (SVMs), and
deep learning architectures. Researchers invariably
grapple with the question: “Is there a perfect model
for forecasting financial markets? “Despite the
laudable advances in forecasting techniques, it
remains clear that financial markets have several
unique characteristics. First, their time series data
often exhibit no stationarities, heavy tailed
distributions, jumps, and abrupt changes. Second,
market complexities are magnified by the interplay
of human psychology, as investor sentiment and
policy uncertainties strongly influence price trends
and volatility. Third, there is a fundamental tension
between short-term horizon and long-term horizon
forecasting. Consequently, continuous research and
development efforts are imperative to enhance the
precision and dependability of distinguishing
human-generated content from artificially generated
content. The short-term horizon approach (e.g., daily
or intraday) is typically pursued by high-frequency
traders, while long-term horizon models (e.g.,
quarterly or annual) matter greatly for
macroeconomic policy or corporate decision-making.
Finally, risk management through robust
measurement of volatility and tail risks remains
integral to the practical success of any trading or
forecasting model. This paper endeavors to explore
these overlapping themes. First, I consider the
significance of risk, uncertainty, and trading

practices in financial markets. Second, 1 review
findings regarding neural networks and statistical
benchmarks for predicting market indices. Third, I
address the growing trend of big data analytics and
deep neural networks, offering insights into how
new algorithms tackle nonlinearity. I then answer the
question of whether forecasting necessarily
optimizes returns. Finally, the discussion covers
horizon testing, accurate metrics, and the ways in
which uncertainty influences predictive
performance. In weaving these threads together, I
aim to provide a thorough overview of the current
state of knowledge, while also highlighting the
challenges inherent in financial market forecasting
Gajamannage, et al (2023). Thus, I need to do much
more on understanding how to produce forecasts
capturing uncertainty Alroomi, et, al (2022)

2.2. Risk And Trading In Financial Markets

Understanding risk is pivotal in trading. Risk in
financial markets arises from uncertain price
fluctuations, abrupt regime shifts, volatility clusters,
and myriad exogenous shocks. This section explores
how scholars have approached the concept of risk,
the metrics used to measure it, and the trading
strategies that either mitigate or exploit it.

According to Pham, et al, (2014), stock assessment
and risk management form two core strategies used
by practitioners to guide trading decisions. Financial
markets, especially equities, are subject to rapidly
changing dynamics, including uptrends,
downtrends, or sideways moves. Integrating an
explicit risk management plan into a trading system
significantly enhances the probability of achieving
above-average returns while limiting possible
downside. Pham et al. (2014) developed a novel stock
trading system by integrating Kansei evaluation
methodology originally used to assess affective
responses in design with a self-organizing map
model. Their approach was tested on daily stock data
from exchanges in the U.S. (NYSE and NASDAQ) as
well as in Vietnam, with encouraging results in terms
of reduced losses and improved risk-adjusted
returns.

In a similar line of research, Vella, et al (2016)
explored the possibility of mitigating risk and
handling uncertainty in high-frequency trading
contexts. ~ They  emphasized that market
microstructure noise at very high trading frequencies
aggravates the uncertainty embedded in price and
volatility dynamics. The researchers proposed an
interval type-2 model based on a generalization of a
type-1 ANFIS (Adaptive Neuro-Fuzzy Inference
System). Known as ANFIS/T2, this model not only
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improves risk-adjusted performance but also
contains computational complexities. Their results
confirmed that more sophisticated fuzzy and neuro-
fuzzy systems can provide valuable tools for coping
with market risk, ultimately aiding regulators,
practitioners, and researchers in designing risk
management protocols.

Another angle in risk management involves
identifying time windows or market segments
wherein risk is more pronounced. Riedel, et al (2015)
investigated tail risk, especially lower tail downside
risk, by employing GARCH models for returns of
stock markets in the United States, Japan, Germany,
and France. Their surprising finding was that
overnight return innovations displayed a significant
tail risk while intraday innovations did not.

In contrast to these studies focusing on exogenous
and microstructure factors, Shoji, et al (2016) delved
into the realm of behavioral finance. Relying on
prospect theory, they used numerical simulations to
demonstrate that “risk-seeking in losses” is a key
driver in generating the disposition effect (the
observed tendency of investors to hold onto losing
positions too long and sell winning ones too soon).
Indeed, Barberis, et al (2009) had stressed that the
value function in prospect theory makes investors
risk-averse in gains while being risk-seeking in
losses. Thus, risk extends beyond purely quantitative
definitions, intertwining with investor psychology to
shape actual market outcomes.

2.3. Nonlinearity Versus Linearity And The
Emergence Of Hybrid Approaches

Nonlinearity remains a central theme: many
market time series exhibit structural breaks, abrupt
shifts, cyclicality, and strong interactions across
multiple time scales. Traditional linear ARIMA or
ARMA models struggle to capture dynamic
behaviors unless augmented with regime-switching
or threshold components. In this sense, neural
networks, SVMs, or GARCH variants frequently
provide better fits.

Tealab, et al (2017) classify time series by their
linearity behavior, maintaining that linear time series
forecasting might be sufficient for well-behaved data
sets, but real-world financial markets rarely remain
stable or linear. Tellingly, the authors note that
“common neural networks” often are not sufficient
for dynamic behavior with moving average terms.
Deep learning or hybrid combinations of fuzzy logic,
wavelets, or evolutionary optimization might be
necessary.

Deep convolutional networks have had particular
success in pattern recognition tasks such as

handwriting verification or image-based algorithmic
trading signals Hafemann, et al (2017). Support
vector machines (SVMs) also remain popular,
especially for classification tasks or stock direction-
of-change predictions Tay, et al (2001).

Studies show that shallow MLPs or feedforward
neural networks occasionally fail to find global
minima Kuremoto, et al (2014). Deep belief networks
comprising stacks of restricted Boltzmann machines
can mitigate some local optima issues. Moreover, big
data analytics provide new frontiers for deep
learning in tasks such as semantic indexing of large
text corpora, unstructured data mining, or anomaly
detection in real-time trading. Najafabadi, et al (2015)
stressed that unsupervised deep learning methods
can parse massive volumes of unlabeled data,
revealing hidden correlations or latent features.

Nonetheless, as pointed out by Tealab et al. (2017),
any forecasting success with deep networks is
dependent on how well the architecture is suited to
the problem’s time scale, the stationarity or
nonstationary of data, and the richness of the
available features. For certain tasks especially short-
horizon forecasting a simpler ARIMAmight
outperform large-scale deep networks if data are
limited or the series is stable. By contrast, in contexts
of big data, complex patterns, and high noise, deeper
architectures often shine.

2.4. Inking Forecast Accuracy And Trading
Returns

An enduring question in finance is: even if a
model has strong forecasting accuracy, does that
necessarily translate into higher trading profitability?
To address this, many scholars have designed
trading simulations with transaction costs, slippage,
and real-time constraints.

Choudhry, et al (2012) utilized artificial neural
networks to predict foreign exchange rates (USD-
EUR, DEM-USD, JPY-USD) at high-frequency. They
discovered that an active trading strategy using the
ANN’s buy/sell signals was profitable net of
transaction costs. This implies that certain
microstructure variables (like bid-ask spreads and
last trade price) can be harnessed for short-horizon
profitability, a reflection of the real-time
informational advantage of the model.

On the equity side, Bekiros, et al (2008) studied
recurrent neural networks to forecast direction-of-
change in the NASDAQ index. They integrated
measures of volatility changes into the RNN-based
trading rule, finding that it not only outperformed a
standard buy-and-hold approach but also remained
profitable after accounting for transaction costs.
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RNNs, in capturing short-term memory and
dynamic patterns, seemed adept at timing the
market.

Dunis, et al (2002) aimed to forecast volatility for
GBP/USD and USD/JPY exchange rates. They then
constructed a trading strategy around options
straddles, capitalizing on mispriced implied
volatility. Similarly, they reported positive net
returns from the nonparametricc, RNN-based
approach. Meanwhile, Sokolov, et al (2016) observed
that ANN-based strategies for macroeconomic
forecasting (e.g., using trade parameters) can yield
improved portfolio decisions in practice.

Other research explored SVM-based trading rules.
Dunis, et al, (2013) examined whether SVM
predictions of weekly change in the Spanish IBEX-35
outperformed MLP or buy-and-hold strategies,
concluding that SVM accuracy was high but sensitive
to the length of training data. Qu, et al (2016) tackled
high-frequency returns of the Chinese CSI 300 index
with support vector regression. By proposing a novel
kernel function to capture cyclicality and decaying
influences of past returns, they achieved superior
directional accuracy and higher capital gains.

These studies illustrate that while accuracy alone
does not guarantee profits, many advanced Al
models particularly neural networks and SVMs
demonstrate real-world potential when carefully
adapted. Yet, each must be tested rigorously under
robust simulation conditions that incorporate
realistic costs and constraints.

2.5. Methodological Considerations For Testing
Multiple Models

In a practical sense, designing an empirical study
to identify a “best model” typically involves the
following steps:

1. Data Collection and Frequency Setting

Researchers decide which markets (e.g., equities,
currencies, commodities) and which instruments or
indices (e.g., S&P 500, DJIA, IBEX-35, CSI 300) to
include. They also choose frequency daily, weekly,
monthly, or intraday (15-minute, 30-minute bars) in
alignment with the horizons they wish to forecast.

2. Multiple Methods Selection

As the overarching research question suggests, it
is vital to test both widely used statistical models
(ARIMA, GARCH variants, logistic regressions) and
popular Al methods (MLP, RNN, SVM, deep
learning). Then, additional hybrid or ensemble
approaches might be added, e.g.,, GARCH-MIDAS
with exogenous variables or ANFIS with fuzzy logic.

3. Exogenous Regressors and External Inputs

Including fundamental data (e.g., interest rates,

GDP, inflation), technical indicators (RSI, MACD,
moving averages), or sentiment measures (investor
sentiment, web search intensity, news analytics) can
significantly affect model performance. The success
of these inputs depends on their correlation with
future returns or volatility.

4. Implementation and Training

Each model is trained on historical data (in-
sample). Hyperparameters for neural networks
might be tuned wusing cross-validation or
grid/random search. The final model is then tested
on out-of-sample data to assess generalization.

5. Accuracy and Profitability Checks

Common error metrics (RMSE, MAE, MAPE,
Theil’'s U,) are calculated. If a trading strategy is
tested, performance metrics might include net
returns, Sharpe ratios, maximum drawdown, and
other risk-adjusted performance measures.

6. Comparison and Robustness Analysis

The next step is to check whether one model
outperforms the others consistently or only in certain
market regimes or time windows. Statistical
significance tests like Diebold-Mariano or Model
Confidence Set add rigor, while scenario analyses
(e.g., sub-periods, crisis vs. non-crisis years) gauge
robustness.

In practice, the variety of possible combinations
(algorithm x horizon x frequency x input set) often
leads to an enormous search space. It is not
uncommon for academic studies to limit their scope
due to computational or data constraints, which
helps explain why no single “perfect model”
emerges.

The literature suggests that while certain models
consistently outperform others in specific scenarios,
no single approach reigns supreme across all
conditions. Neural networks, especially deep
learning methods, have demonstrated capacity for
capturing highly nonlinear patterns and gleaning
hidden features from big data. However, they can be
susceptible to overfitting, require extensive
computational resources, and may be difficult to
interpret. Statistical techniques such as ARIMA or
GARCH are simpler and remain powerful when the
data exhibits certain stationarity or structure, but
they often struggle with abrupt regime changes.

Risk management remains paramount. Models
that track or predict tail risk, volatility jumps, or
macroeconomic instability can be especially
valuable. The synergy between advanced volatility
modeling  (GARCH-MIDAS) and  external
explanatory variables (like policy uncertainty
indices) has yielded consistent improvements,
particularly in daily or monthly volatility forecasts.
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Research on forecast horizons underscores that
predictive accuracy for longer horizons frequently
declines, but not always. In some contexts, horizon-
specific calibration or combining forecast horizons
can preserve accuracy. The practical question for
financial market participants is whether short-term
or long-term predictions better align with their
investment strategies or policy objectives.

Finally, the question “Is there a perfect model for
forecasting financial markets?” persists. Given that
markets evolve, conditions change, and investor
psychology can shift unpredictably, it seems
improbable that any single approach is universally
optimal. Nonetheless, the ever-growing
sophistication of Al, big data analytics, and ensemble
methods continues to push the boundary, making
forecasting more robust, and perhaps in the future,
bridging the gap between theoretical accuracy and
real-world profitability.

A broad spectrum of models were tested:

NNET_THETAF (Neural Networks with Theta
Model)

(y_t)=f(WX+b)+6-y_t+(1-0)-T_t,(1)

Where:

(y_t) predicted value at time t.

f Neural network function capturing nonlinear
relationships.

W Weight matrix for the neural network.

X Input features vector.

b Bias term in the neural network.

6 Parameter balancing actual and
components.

_t Actual observed value at time t.

T_t Trend component from the Theta model.

- Multiplication operator.

(1-0) Complementary fraction to 0.

This equation merges a neural network’s NNET
(Neural Networks for Time Series) y_t=f(WX+b)
capacity to capture nonlinear patterns with the Theta
model’s (THETAF (Theta Model)( y_t ) =0-y_t+(1-
0)-T_t robust trend estimation, enhancing forecast
accuracy for time series data. By incorporating both
the raw series y_t and its trend component T_t. The
model adeptly balances short-term fluctuations with
long-term growth or decline. The parameter 0
dictates the weight of each component, enabling
flexibility across various market or environmental
scenarios. Widely adopted in financial analytics,
demand forecasting, and climate modeling, it
leverages deep learning pattern extraction alongside
the Theta method’s proven reliability, delivering
improved prediction performance and
interpretability  across numerous real-world
applications in diverse industries.

trend

NYMPHY_EXOGONOUS_CLOSE (Neural
Network with Exogenous Variables)
(y_t
) =f(WX+b+Z_t"exogenous )
)
Where:

(y_t ) predicted value at time t.

f Neural network function capturing nonlinear
relationships.

W Weight matrix for the neural network.

X Input features vector.

b Bias term.

Z_t Exogenous variable.

This model integrates exogenous variables Z_t
into a neural network, capturing external factors that
traditional endogenous-only approaches overlook.
By including an Exogenous variable, the network
identifies correlations that enrich prediction
accuracy. Weight parameters W and bias b optimize
how these inputs interact with the primary features
X. This approach is particularly valuable in financial
forecasting, where influences like 10% increase on
decrease in closing price changed significantly affect
market trends

NYMPHY_CLOSE_HIGH (Neural Network with
Close and High Prices)

(y-t
) =f(WX+b+Z_t"'close"
3)

Where:

(y_t) predicted value at time t.

f Neural network function capturing nonlinear
relationships.

W Weight matrix for the neural network.

X Input features vector.

b Bias term.

Z_t""close" Closing price input.

Z_t""high" High price input.

By incorporating both the closing and high prices
as inputs, this neural network model captures a
broader range of market dynamics. The weights W
and bias b adapt to how these features combine with
the core input X, enabling the function f to detect
patterns associated with price volatility and
momentum  shifts. In financial forecasting, high
prices often signal peaks or intraday sentiment, while
closing prices reflect consolidated market conditions.
This dual-price approach empowers traders, risk
analysts, and automated systems with richer insights
for better decision-making. Its predictive power
significantly extends to algorithmic trading, asset
valuation, and proactive risk mitigation.

NYMPHY_CLOSE_LOW (Neural Network with
Close and Low Prices)

+Z_t""high'" )
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(y-t
) =f(WX+b+Z_tN'close" +Z_t""low" )
“)
Where:

(y_t ) predicted value at time t.

f Neural network function capturing nonlinear
relationships.

W Weight matrix for the neural network.

X Input features vector.

b Bias term.

Z_t""close" Closing price input.

Z_t""low" High price input.

This neural network architecture incorporates
closing and low-price data, offering enhanced
sensitivity to market fluctuations and risk signals.
Low prices can reveal intraday troughs or support
levels, while closing prices summarize the day’s final
sentiment. By combining these inputs with the
network’s weight matrix W and bias b, the function f
can more accurately predict future values, especially
under volatile conditions. Common in financial risk
management and algorithmic trading, this approach
identifies significant downside trends and highlights
potential entry points.

NYMPHY_CLOSE_HIGH_LOW (Neural
Network with Close, High, and Low Prices)
Equation:
(y-t
) =f(WX+b+Z_t""close" +Z_t""high" +Z_t""low" )
(5)
Where:

(y_t ) predicted value at time t.

f Neural network function capturing nonlinear
relationships.

W Weight matrix for the neural network.

X Input features vector.

b Bias term.

Z_t""close" Closing price input.

Z_t"'high" High price input.

Z_t"M'low" High price input.

This comprehensive neural network model
enriches time series forecasting by integrating
closing, high, and low prices. It reveals a detailed
picture of price movements, capturing both
maximum peaks and potential support levels
alongside final daily sentiments. These inputs feed
into the weighted function f, allowing for nuanced
detection of emerging trends, market volatility, and
sentiment shifts. In financial contexts, such multi-
price integration boosts the model’s responsiveness
to intraday volatility and end-of-day market stance.

3. Data, methodology and output

The data for this paper was collected from 18
companies listed on the FTSE 100 index. The selection

criteria prioritized the most capitalized companies
within the index, ensuring that the dataset
represented the largest and most influential firms. To
maintain consistency and comparability across the
dataset, the unit measure was standardized across all
companies, rather than aligning solely with the dates
of share prices. Consequently, the dataset comprised
daily (4000 units), weekly (825 units), monthly (191
units), quarterly (65 units), and yearly (17 units)
observations, covering the period from 2000 to 2016.
The data collected included the high, low, close,
adjusted close, volume, and % of change for the
selected companies' share prices.

Here, I measure the forecasting accuracy using
two different approaches according to the forecasting
period. For monthly data I forecast 18 months ahead
using all the methods used. After the forecast, I test
our six different error matrices for each method and
each frequency. After the error has been developed, 1
analyze the matrices according to a set of ranking
points. Here, fewer points are awarded for fewer
errors, thus the method with the least points is the
more accurate.

The second approach tests the accuracy between
methods and horizons. The forecasting here uses
different training data to that used in the first
approach where I used all data points as training data
from the beginning. However, in the second
approach I used progressive continuous addition of
training data. In the first approach, I used the first 100
data points to forecast 18 horizons; the next data
point and training data was re-computed to produce
a sequence of 18 horizons. This procedure applies to
all of the remaining datasets.

The methodology tested in this paper employs a
quantitative approach to compare a diverse range of
forecasting methods, spanning both statistical
techniques and artificial intelligence (AI). A total of
30 methods were tested, comprising 23 statistical
techniques and 7 Al models. The remaining two
methods were excluded from the analysis due to
their inability to produce outputs or adapt to the
time-series data. The adaptability of certain models
was contingent on the presence of seasonality in the
data. In cases where the time series lacked
seasonality, these models failed to compute forecasts
and yielded no results. All statistical methods were
implemented using R software, while Python was
employed for the AI method. The tested methods
represent widely used techniques in the forecasting
field. However, their performance often depends on
the characteristics of raw data. As noted, models
reliant on seasonality may perform poorly or result
in non-applicable (NA) outputs when such patterns
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are absent in the dataset. This highlights the
importance of aligning the chosen methodology with
the underlying properties of the data to ensure
reliable and meaningful results. Complete
optimization is impossible when it comes to
forecasting different academics debate what to
optimize and how to implement their models.
However, there are more widespread theories out
there which many scholars do use and agree on. In
our model under error testing, the more commonly
used errors matrices: Mean Error (ME)
ME=1/N

Y (=D N:: [(fi-k_i)]
©)

Where:

N = # observations

f i = represents the predicted value for the
i“thobservation

k_i = represents the actual value for the ith

observation

(f_i-k_i) = represents the error for the i“th
observation
Mean Absolute Percentage Error (MAPE)

MAPE=1/N

(1 |-1kd )/ 1kd | )] x 100

Where:

((1f1 |-1k4 |)/ |k | )= represents the absolute
error for the ith observation

Mean Percentage Error (MPE)
MPE=1/N

(Fiki)/ki )] x 100

Where:

/N Y (=D)"N. [((1fd |-k )/ [k )] x
100 = with the exclusion of absolute value

Mean Squared Error (MSE)
MSE=1/N

[(f_i-k_i)] "2

[(f_i-k_i))] "2 = represents the squared for the
i~th observation
Root Mean Squared Error (RMSE)
V1/N
((f_i-k_i)] "2 )

Y_(i=1)"N
(10)

Where:

The square root of 1/N Y (i=1)"N;
A2 is calculated

Mean Absolute Error (MAE)

Mean Absolute Scaled Error (MASE)

q_t= e_t/(1/(n-1)
Y_(i-1) ) )

Where:

e_t =f i-k_i which indicates the error at time t

Y_i = represents the actual value for the i“th
observation

Y_(i-1) = represents the actual value -1 indicating
previous for the i*th observation

Log returns were also determined by the model,
with the same capacity as the error matrices
calculation. Furthermore, as six different error
matrices were tested, the scale of the test itself
increases and develops a more determined and
detailed conclusion as I can conclude which function
is more accurate under the different circumstances
mentioned. The results that are presented are a mere
fraction of the results that were produced. The total
output will be freely available upon request. Due to
the size of the total output, I were unable to showcase
all the results. Furthermore, the vast output that was
computed presented us with the dilemma of how to
be fair and consistent when presenting the results
from our horizon testing. Therefore, in a
commanding rule, the paper presents the absolute
percentage error (APE) & (MSE) accuracy tests.

Table 1: Title caption.
Methods

Description
Neural Network
1. NYMPHY_EXOGONOUS_CLOSE| with exogenous

variables

Neural Network
with Close and
High share price
Neural Network
with Close and
Low share price
Neural Network
with Close, High

and Low share

price

2. NYMPHY_CLOSE_HIGH

3. NYMPHY_CLOSE_LOW

4. NYMPHY_CLOSE_HIGH_LOW

The tested models here are the neural networks
testing uncertainty. Nymphy was the function tested
in this paper. The algorithm was constructed to test
whether the volatility of the share price could predict
the future for that share price. The table below
presents the results from our test for each method.
The methods were tested under the six error matrices
above. This shows us which method performed
better under which error. A detailed table on the
classification of accuracy testing shows an overview
of how the methods are performed. The table below
reveals strength in the random walk forecast (RWF)
and the mean in the mean error (ME) test, but this
strength diminishes along with the error matrices.
Specifically, the mean became the least accurate test
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in all the other error testing apart from the mentioned
ME test. The naive model showed better accuracy
than the other models in three of the six accuracy
tests, performing better in MAE, MAPE and MASE.
Neural networks and the Holt-Winters performed
better in RMSE and MPE, respectively. The Nnet
function would take advantage of the RMSE high
values and variance thus here being uncertainty and
thus meaning nonlinearity of the test would
eventually perform better.

Table: 2: Title caption.
Models | Weekly Values
MAP | MAS

ME | RMSE | MAE | MPE AVE

E E
AUTO | 0.577 | 85.463 | 57.664 |-0.407| 5.961 | 0.963 | 25.037
SES 0.577 | 85.463 | 57.664 [-0.407| 5.961 | 0.963 | 26.547
HOLT | 0.267 | 86.895

58.387 [-0.313] 6.047 | 0.983 | 25.378
BATS &
TBATS -0.308 | 86.332 | 58.239 [-0.750| 5.952 | 0.980 | 25.074

DSHW | 1.063 64.763 |1.092| 7.916 | 1.091 | 28.585
NAIVE

& 5.738
SNAIVE
NNET | -0.051 | 82.118 | 56.562 |-0.739| 5.714 | 0.939 | 24.091
898.46 | 1252.45 | 1073.24 | 73.50

95.586

88.257 | 59.434 |-0.317| 6.042 | 1.000 | 26.692

SPLINE 4 6 6 9 80.697| NA | NA
THIETA 5.880 | 87.759 | 58.980 [-0.335| 6.004 | 0.992 | 26.547
RWF | 0.000 | 87.679 | 58.843 |-0.322| 6.074 | 0.992 | 25.544
MEAN | 0.000 |452.212 |395.048 | 57.12 |79.138 | 6.289 1457'92
7

AUTO |188.54 15.89 201.97
% SES 3 530.967 | 438.400 5 31.776 | 6.290 3
AUTO

% 94.809 | 449.495 | 364.327 12(')97 29.857| 5.713 1598.52
TBATS
AUTO

% 19:;’75 549.685 | 459.314 15%37 32.748 | 6.507 20i'56
NNET
SES &
THETA 2095'28 564.813 | 470.709 19644 34.611| 6.290 2176.52

F
SES % |493.43 ) 302.73
MEAN 1 668.433 | 599.344 11é46 57.966| 8.685 5
TBATS

& 11%55 466.547 | 381.223 16452 32.233| 6.313 1692'73
THETA
NNET &| 188.54 15.89 201.97
THETA 3 530.967 | 438.400 2 31.776| 6.290 3

In our weekly tests, the neural network model
performed significantly better than other models in
four out of the six error matrices, beating the naive
model in the weekly test where the random walk
model had performed better in one out of the six
error matrices. The neural network performed better
in the following errors: RMSE, MAE, MAPE, and
MASE. The high performance in four errors shows
that there is more nonlinearity in the weekly test

where Nnet recorded better performance under the
mentioned conditions. The lowest performing model
was produced by the spline model, which had the
least accurate results in four out of the six error
measurements. RMSE, MAE, MPE, and MAPE were
the measurements where the spline model showed
its weakness.

Table 3: Analysis & Evaluation.

Classificatio
ns of
Accuracy
Testing
ME RMSE MAE MPE MAPE MASE
Daily 'RWF&MEA NAIV NAIV
1st N IT\I/II\I{Z? E I_I\I/IOEIIf E NAIVE
Daily SES%MEAN N MEA N MEA MEAN
LE N N N
|
“}’,e;lfl 'RWFKIMEA NNET NNET HOLT NNET NNET
Weekl SES%MEAN SPI}EIN SPI}EIN SPI}EIN SPIEIN SESI<I 1>\/IEA
y LE A

* (LE) here meaning least accurate model. * Here
represents a hybrid model combining two functions.
& here meaning a joint accurate best accurate model.
So, both methods have the same result of error. ! Net
was very close behind with -0.0043.

As seen from the tables above, both neural
networks and the naive methods have performed
very well in the test run. As the RWD enforced its will
upon other models, Nnet performed better in the
weekly frequency and almost did so in the daily
frequency. If an average of the errors was taken for
each method, neural networks performed better in
both daily and weekly frequencies. This also takes
into consideration that the neural network test was
implemented with a single input and no alternative
inputs were chosen for the network to learn, work,
and develop.

Table: 4:
Classifications
of Accuracy
Test
Daily Weekl | Monthl | Quarterl | Yearl Total
y y y y

ME 48.78 412 | 1.199 0.221 |0.018 | 54.338
MAE 48.78 412 | 1199 0.221 | 0.018 | 54.338
MAPE 48.78 412 | 1.199 0.221 |0.018 | 54.338
MPE 48.78 412 | 1199 0.221 | 0.018 | 54.338
MSE 48.78 412 | 1.199 0.221 |0.018 | 54.338
RMSE 48.78 412 | 1.199 0.221 |0.018 | 54.338
TOTAL 292.68 2472 | 7.194 1326 |0.108 3268'02

The table above shows the errors that were
produced, calculated and tested. Due to the
significant number of errors that were tested, the
implemented test was carried out on the HPC Wales
supercomputer (cloud). The implementation of the
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test in this paper would have taken over a year on a
normal everyday computer. At first, the
implementation was carried out on a Dell XPS 17
laptop but after a few weeks of running the test was
stopped. At this point, the notion of using a
supercomputer arose, while there were also some
clouds and clusters to consider. Finally, a decision
was taken to implement the test on the HPC Wales
supercomputer cloud. The test took 44.5 hours on 45
cores. This was due to the high computation being
run. At the start of our code being run on the HPC

cloud was going to result in a significant difference
time wise to run the code. However, after
introducing parameters to the test and implementing
dynamic arrays, the time was reduced. However,
there was more effort taken to reduce the time that it
would take to reduce the time the test was taken, in
effort to do that, the methods were allocated to
individual cores and the more computationally
intensive functions were allocated more cores. The
forecasts produced according to the actuals of the
company’s stock price are publicly available data.

Table: 5:
DAILY APE

METHOD HORIZON
1 2 3 4 5 10 22 1-10 1-22
AUTO_ARIMA 0.014 0.020 0.024 0.028 0.031 0.045 0.067 0.031 0.045
AUTOARIMA_FOURIER {0.013 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041
AUTOARIMA_NNET 1.106 1.105 1.103 1.103 1.103 1.102 1.102 1.103 1.102
AUTOARIMA_SEASDUMMY| 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041
AUTOARIMA_SES 1.106 1.106 1.106 1.106 1.107 1.108 1.110 1.107 1.108
AUTOARIMA_TBATS 1.106 1.107 1.107 1.107 1.107 1.109 1.112 1.108 1.109
BATS 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041
DSHW_DAILY 0.016 0.022 0.026 0.030 0.033 0.045 0.068 0.033 0.047
HOLT 0.013 0.019 0.023 0.026 0.030 0.042 0.062 0.030 0.043
HOLT_WINTERS 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041
MEANF 0.801 0.802 0.803 0.803 0.804 0.806 0.813 0.804 0.807
naive 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041
NNET 0.017 0.025 0.032 0.038 0.044 0.067 0.104 0.045 0.068
NNET_THETAF 1.105 1.103 1.102 1.101 1.100 1.096 1.088 1.100 1.095
RWEF 0.013 0.019 0.023 0.027 0.030 0.042 0.062 0.030 0.043

SES 0.013  {0.019 0.019(0.023 0.023]0.026 0.026] 0.029 0.030 |0.041 0.042[0.059 0.062[0.029 0.031[0.041 0.045

SES_ MEAN 0.923 0.923 0.922 0.922 0.922 0.921 0917 0.922 0.920
SES_THETAF 1.105 1.105 1.105 1.104 1.104 1.101 1.096 1.103 1.101
SINDEX 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041
SNAIVE 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041
STL 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041
TBATS 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041
TBATS_THETAF 1.106 1.106 1.105 1.105 1.104 1.102 1.098 1.104 1.102
THETAF 0.013 0.019 0.023 0.026 0.029 0.041 0.060 0.029 0.042
TSLM 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041

The first table of our results section shows the
output results for our tested APE and the table shows
specifically the daily output. The winning method
from each horizon is presented in bold and the
median for the same horizon is presented in italics
(this is carried over through all results).In our daily
APE results, the simple exponential smoothing (SES)
takes over the accuracy testing from the second
horizon on, becoming more accurate even when the

horizons were averaged, demonstrating its near
monopoly of the daily APE. However, the Autoarima
Fourier had its say when it came to the first horizon.
Whereas both SES and Autoarima_Fourier both
show 0.13 in the first horizon Autoarima Fourier
performed better on the 4th decimal.

Table: 6:
daily ape
METHOD HORIZON
1 2 3 5 10 22 1-10 1-22
close 0.024248 0.024247]0.024245|0.024244| 0.024243 0.024237 0.024219  ]0.024242)0.024234
close_high 0.024895 0.024894/0.024894|0.024894| 0.024893 0.024889 0.024873  0.024892)0.024886
close_high_low 0.016707 0.016708(0.016708{0.016708| 0.016708 0.016708 0.016702 0.016708{0.016706
- - 0.021847 0.021847)0.021847|0.021848| 0.021848 0.021847 0.021843 0.021848|0.021847
close_low 0.019447 0.019448|0.019449|0.019451| 0.019452 0.019458 0.019467  ]0.019453)0.019459
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s PRt 0.018832(0.022836(0.026175 0.029162 |  0.040821 0059134 |0.029275/0.041303
(AUTOARIMA FOURIER)|(018959(0.023048/0.026486| 0029591 |  0.042036 0062275 |0.0310070.045043

The daily APE results for the Nymphy model and
the winning method from TEST 2 are shown above,
with very interesting results. Produced from 4
thousand data points, the method close_high_low
shows very consistent results going from horizon 1
through to horizon 22, however that is not the case
for the best method carried over from TEST 2, only
beating the close_high low method on the first
horizon only where it was not the SES method but
rather the Autoarima_Fourier method.

Table:7.

monthly | ape
METHOD

HORI
ZON
1 2 3 4 9 18 | 19 | 1-18
0.110{0.109| 0.108 | 0.108 {0.102800.095 | 0.106 | 0.102
653 | 91 | 936 | 032 2 695 | 916 | 559
0.048|0.048| 0.048 | 0.047 {0.04581|0.044 | 0.047 | 0.045
861 | 67 | 108 | 595 9 107 | 275 | 935
0.043|0.043| 0.043 | 0.042 {0.04201 | 0.041 | 0.042 | 0.042
close_high_| 350 | 355 | 174 | 933 9 146 | 735 | 062
low 0.048|0.048| 0.04710.047|0.04570|0.043 | 0.047|0.045
346 | 161 | 784 | 416 5 429 | 049 | 658
0.047]0.047| 0.047 | 0.047 {0.04559|0.042 | 0.046 | 0.045
832 | 652 | 460 | 237 1 753 | 823 | 381
0.100
0.056 (0.081| 575 |0.1180.19923|0.349|0.133|0.206
autoarima_| 734 | 133 | 0.108| 678 5 945 | 154 | 680
fourier [0.059[0.086| 120 |0.129(0.23074|0.442)0.150|0.242
492 | 376 | (NAI| 480 1 083 | 454 | 198
VE)
Producing the same outcome as the daily APE, the
weekly results show us how uncertainty can produce
better results. Furthermore, where in the daily results
the winning method for horizon 1 did perform better
than the close_high low method, here the
close_high_low method performed stronger even

one horizon ahead.

close

close_high

close_low

The quarterly APE outcome also shows us how
the close_high_low method can perform better than
all other neural network methods tested here and can
also perform stronger and more consistently than the
strongest methods from TEST 2. However, in this
case, the most accurate method from TEST 2 did
perform better one horizon and two horizons ahead,
however it lost accuracy after that. Meanwhile, to
compare the close_high low showed that it was
consistent moving from one horizon to the next, this
is because it did not lose accuracy as quickly as the
methods from TEST 2.

Table: 8.
yearly | ape

HORI

METHOD ZON
1 2 3 4 1-2 | 14
0.647|0.651 0.649190.672
close 111 | 285 0.676842 0.715215 8 613
close_hig | 0.217{0.218 0029277 0248240 0.21793]0.228

h 690 | 180 5 347

0.164 | 0.166 0.16548|0.176

close_hig | 094 | 871 | 0.179122 0.196443 3 632
h_low [0.252]0.250| 0.262187 0.282098 |0.2517410.261
530 | 952 1 942
0.28710.283 0.28554|0.295

close_low 370 | 723 0.295097 0.315955 6 536
0.2380.324 | 0.428134 0.422913 |0.28147|0.400
thetaf_yea| 219 | 738 | 0.936784 1.294401 8 210

rly 0.451|0.558 | (NNET_TH | (NNET_TH |0.50514|0.747
838 | 452 ETAF) ETAF) 5 618

The same occurs in the yearly APE results, where
the close_high_low performs better than all the other
methods including the methods from TEST 2, and in
this case even in horizon 1 and 2 where in the
quarterly results the methods from TEST 2
performed better.

Table: 7. Table: 9.
quarterly | ape e daily Irels
METHOD
ZON METHOD HORIZO
1 2 3 4 8 12 1-6 |1-12 N
0.496]0.495(0.495]0.497] 0.5081 0.497]0.507 1- | 1-
112]3]4 5 10 | 22
close 1967 893 | 791 | 656 | 13 | 2233274 | 914 | 331 10 | 22
—10.265]0.266]0.267]0.269] 0.2784 0.269]0.276 182(182]183 (183 186 184187
close 1840 1914

close_high|"o7c '\ 474 | 439 | 942 | 73 | 027188 | 350 | 379 5/8[2]6 6 411
0.1640.165|0.166(0.167| 0.1749 0.167]0.172 178[179]179{179 182 180182
close_high| 642 | 393 [ 231 | 947 | 09 |0.183577 | 552 | 817 close_high | 8| 1|4 |8 | 1801 |1 1858 4 |5
low  |0.285(0.286(0.286(0.289| 0.2983 | 0.312349 |0.288(0.296 - 202(202(202{203| 2041 |207|2130|204 | 208
519 | 098 | 737 | 040 | 42 737 | 064 0]4]9]5 3 500
0.305|0.305]0.306]0.308] 0.3182 0.308]0.315 close_high_lo|221 (222222223 228 224228
close_low |51 701 | 035 | 139 | 11 | 9332839 | 124 | 750 w 5107 [al 2 0|26
0.108(0.164[0.213(0.262| 0.5386 | 0.508976 |0.239(0.441 dose low |295] 245246247, o0 (252, [248] 253
autoarima | 245 | 416 | 086 | 497 | 82 |0.832367| 539 | 059 - 31964 8 8|8
_fourier [0.120(0.190(0.252|0.321| 0.6280 | (SES_TH |0.286|0.565 105|197|283(367| 4526 |852 1686|488 |940
869 | 705 | 326 | 027 | 08 | ETAF) | 677 | 188 ses 8| 7|9|3| 445 |11 |2]5
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106 198|285 368 8561701 | 490 | 946

115|117 6 0 419

For the daily MSE results, the close_high method
performed better than all other methods, however
the SES method from TEST 2 was stronger one
horizon ahead but then lost strength and lost strength
faster than the close_high after horizon 1. Compared
to the APE daily results, the close_high_low method
was the stronger model, but this was not the case for
the MSE daily.

Table: 10.
weekly  |mse
METHOD HOIIEIZO
1 2 3 4 6 12 | 1-6 |1-12
113|114

7 | 9 |1161|1175| 1200 |1278(1169|1206

close 196 197]1986|1991| 2011 |2052|1989 2012
8|9
close_high 2§7 259 2301(2306| 2325 |2375|2302(2328
Close—s‘;gh—lo 1§1 15;2 1832|1835| 1850 |1881|1833|1851
close_low 2;1 2(1)3 2139|2147| 2172|2223 |2144|2174
1377|2379
450 | 855 | 1234 | 1587 213 1| 9
. 306 3 | 1| 22203 | 7 |1387]2409
naive

453|859|1241|1595| 22510 |4285| 5 | 4
819] 9] 9 0 |(SES|(SES

) )

The MSE weekly results compare well with the
APE weekly results, showing us that volatility is not
a suitable approach when it comes to the weekly
frequency.

4. RESULTS

4.1. Daily Forecasting Results

Traditional Methods (TEST 2 Results)
From the earlier set of tables (referred to here as
“TEST 2” results), methods such as

Naive model
(13)

Where:

y_t Actual observed value at time t + 1 data point.

Simple Exponential smoothing (SES)

y “(F

t] |t+1)=ay_t+(1-a) y “(F tf 1)
(14)

Where:

v (Ft{ | t+1) is the forecast for the next period

a is the smoothing parameter between 0 and 1

y"_(Ft] |t-1) is the forecasted value at time t made
at time t-1

and especially the neural network approach
(NNET) showed interesting performance patterns.

y_t= y_t+l

For instance, the Naive model was particularly
strong in terms of MAE, MAPE, and MASE, whereas
the neural network excelled at RMSE in the daily
tests, indicative of nonlinearity and higher variance
handling capability.

The daily APE table revealed that SES took over
the accuracy testing from the second horizon
onward, while AUTOARIMA_FOURIER Hyndman
(2014)

y_t=p+y (i=D)"p. (i y (t) ]
Y 0=1)qE (6] e(t) 1 +Y_(=)"Ki( ak
cos(2nke/m)+b_k sin [(2okt/m))] +e_t (15)

Where:

u is the Overall Mean Level: The average level or
intercept of the series. Sets the baseline around which
the series fluctuates.

Y (=1)*pi: [d_iy_(ti) ] is the autoregressive
(AR) term, captures momentum/inertia in the time
series

Where:

p is the order of the AR terms

¢_i is the AR coefficients, Measure the influence
of past values on the current value. High ¢_i means
past values heavily influence y_t

Y _(J=p» 0_j e (tj) ] the moving average
terms

Where:

q is order of the MA term number of past forecast
included

0 _j is the MA coefficient which measure the
influence of past errors on the current value

¢ _(t+) is the past error terms, thus the difference
between previous observations and their forecasts,
hereby adjusting on past mistakes

Y (k=1)» ak cos(2nke/m)+b_k
(2nkt/m))]

Where:

k is the number of fourier frequencies: Determines
how many sine and cosine pairs are included,

a_k and b_k are the fourier coefficients weights
for the cosine and sine terms at frequency Kk,

m is the seasonal period = Number of
observations that complete a full seasonal cycle,

Then: e_t error term at time t: thus equating for
random shock or noise at time t,

performing slightly better at horizon 1. The daily
MSE (Mean Squared Error) table highlighted that SES
tended to be strong over multiple horizons.
However, the naive approach and random walk
(RWF) occasionally performed competitively,
sometimes ranking as top methods at certain short
horizons (e.g., 1-step-ahead or 2-step-ahead).

Nymphy (Close-High-Low) vs. TEST 2

When introducing the “Nymphy” methods that

sin [
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leverage the Close price plus volatility aspects (High
and Low prices), the results shifted in interesting
ways. For example, in the daily APE comparison,
NYMPHY_CLOSE_HIGH_LOW (referred to as
close_high_low in the tables) demonstrated
remarkable consistency across horizons. Meanwhile,
the best method from the original set
(AUTOARIMA_FOURIER) only outperformed
close_high_low at the first horizon. Over longer
horizons, the neural network method with Close,
High, and Low retained a steady advantage,
suggesting that capturing volatility helps the model
generalize better when forecasting daily price
changes.

When looking at the daily MSE results for these
new neural network variants, a slight contrast
emerges: NYMPHY_CLOSE_HIGH turned out to be
more accurate than close_high low under the MSE
criteria. This discrepancy highlights the importance
of distinguishing between absolute percentage errors
(APE) and squared errors (MSE). Methods that do
well on percentage-based metrics do not necessarily
top the rankings on squared error measures, and vice
versa.

4.2. Weekly Forecasting Results

Traditional Methods

For weekly data, the neural network approach
from the earlier tests (NNET) was a standout,
winning four out of six error metrics (RMSE, MAE,
MAPE, and MASE). However, the spline model
performed poorly, ranking last in four out of six
metrics. The weekly MSE table also showed that

Naive (Close-High-Low) vs. TEST 2

In the weekly APE context, the introduction of
close_high_low did not meaningfully surpass the
best methods from TEST 2 for short horizons. Yet, the
overall performance often skewed in favor of neural
network approaches that integrate volatility when
the horizon was extended. The weekly MSE results
could be very strong at specific short horizons.
Nonetheless, the table suggests that SES provides
robust performance over extended horizons, thus
making it appealing for those prioritizing lower long-
term risk.

Nymphy

reinforced the impression that volatility-based
neural networks may not always dominate every
horizon but still present a reliable choice once
horizon lengths increase.

4.3. Monthly Forecasting Results

Traditional Methods
The monthly APE and MSE tables show a

departure from the daily and weekly scenarios. In the
original sets (TEST 2 methods), no single model
dominates all horizons outright. Instead, there is a

rotation between models like
AUTOARIMA_FOURIER, Naive, SES, and
occasionally NNET.

Nymphy (Close-High-Low) vs. TEST 2

Once 1 incorporate the new neural network
models, NYMPHY_CLOSE_HIGH and
NYMPHY_CLOSE_HIGH_LOW frequently emerge
as top contenders across multiple horizons. The
monthly MSE results confirm that these close-price-
plus-volatility approaches beat out older methods by
a notable margin, underscoring the advantage of
including both High and Low-price parameters. This
advantage suggests that monthly data, with
moderate frequencies of volatility, benefits from
capturing both the amplitude and range of price
movements.

4.4. Quarterly Forecasting Results

Traditional Methods

At the quarterly level, some classical methods
such as THETAF or Naive demonstrate particular
strengths at certain horizons, especially shorter ones.
However, the performance is more mixed as horizon
lengthens. The BATS or TBATS models can show
large error values if they fail to capture complex
seasonality’s or produce overfitting problems (as
indicated by exceptionally high MSE for certain
horizons).
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Nymphy (Close-High-Low) vs. TEST 2.

A pronounced pattern emerges in the quarterly
results: NYMPHY CLOSE_HIGH_LOW continues
to dominate many horizons under both APE and
MSE. It appears that, as the time horizon gets longer,
capturing the full range of price movement (Close,
High, Low) yields more stable and accurate forecasts.
The synergy among these price dimensions helps the
neural network anticipate the price direction and
magnitude more effectively than single-variable or
simpler multi-variable methods.

4.5. Yearly Forecasting Results

¢ Traditional Methods

For yearly data, the prior tests showed that
THETAF Assimakopoulos et al (2000) frequently
outperforms many classical methods, particularly for
the first year or two. Meanwhile, double seasonal
Holt-Winters (DSHW) can excel one year ahead but
then loses strength for further horizons. SES_MEAN
occasionally emerges as a surprise winner at longer
horizons (years three and four). Hence, the best
yearly approach can vary dramatically, depending
on whether the user focuses on a 1-year or multi-year
forecast horizon.
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Nymphy (Close-High-Low) vs. TEST 2.

When factoring in the new neural network
methods  that use  High  and Low,
NYMPHY_CLOSE_HIGH_LOW becomes
particularly robust as horizons extend to multiple
years. This is evidenced by lower APE and MSE
values in the tables, suggesting that capturing
volatility is a key advantage when predicting over
longer horizons. Interestingly, while THETAF can be
strong in short yearly horizons, the neural network
that integrates the Close, High, and Low data tends
to maintain more consistent accuracy beyond the first
forecast year.

4.6. Method Performance

At higher frequencies (daily, weekly), the
outcome depends on the error metric. For instance,
close_high low dominated daily APE, but
close_high led in daily MSE.

At lower frequencies (monthly, quarterly, yearly),
close_high_low more consistently led on both APE
and MSE, indicating that incorporating volatility
becomes increasingly valuable for longer-term
forecasts.

Importance of volatility

Methods that integrate exogenous parameters
particularly High and Low prices often outperform
those relying on the Close price alone. This suggests
that volatility dynamics carry predictive power,
allowing the neural networks to gather additional
patterns and thereby reduce error.

Performance of classical methods

Naive and RWF methods can be surprisingly
competitive in short horizons, as they essentially
capture very recent trends.

SES, Holt-Winters, and THETAF remain
reputable contenders, demonstrating that classical
methods are not necessarily inferior but can excel
under particular data characteristics.

5. STRATEGIC TRADING, FORECASTING,
EVALUATION AND CONCLUDING
REMARKS

Strategic trading follows the most accurate
trading tool. The trading tool in this essence, I mean
the most accurate percentage of error thus the least
error computed. This will be incorporated into future
work on how to merge the forecasting that was tested
in this paper and strategic trading.

From the APE testing, the following is apparent:

Autoarima, simple exponential smoothing (SES)
and THETAF performed better than other
algorithms. However, frequency does have a
significant effect on which models work better and
where. Similarly, the horizon also has a noteworthy
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effect on the models tested, where Autoarima in most
cases beat all other models on the first horizon.

The models are competitive. There are somewhat
diverse results as I move along the horizon. SES
shows complete dominance from the daily APE table
where from horizon 2 onwards it performs best in
terms of accurate testing. However, Autoarima
shows overall dominance.

Despite Autoarima’ s overall dominance there are
horizons where it showed weakness, especially the
third horizon and, in some instances, on the second.
It also showed greater strength on medium
frequencies and progressively lost strength as the
frequencies became greater with less and less
training data. Autoarima lost out to other models,
which is observable from the yearly accuracy test
where it did not win on a single horizon. In the yearly
results, other models emerged, for instance THETAF
_YEARLY and NNET_THETAF_YEARLY
performed significantly better than Autoarima.

While Autoarima showed great dominance
overall, SES showed great dominance on the daily
accuracy exclusively, in this test, the latter won on all
of the horizons except the first. Similar dominance
was only shown by Autoarima in the quarterly and
monthly APE results. Thus, I can say with great
confidence that the best trading model for daily
testing is SES and for monthly and quarterly testing
is Autoarima. From these observations I can easily
say that, with more training data, SES is the best
method, however with medium training data
Autoarima is a better option.

Despite constraints in place preventing the
collection of larger amounts of data, our test shows
that THETAF and NNET _THETAF are the most
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