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ABSTRACT 

The paper reveals that while no single model consistently outperforms across different conditions, the 
integration of trading volume and uncertainty measures significantly enhances forecasting accuracy. These 
findings not only challenge traditional forecasting paradigms but also demonstrate the robust potential of 
combining AI with traditional statistical methods. The paper emphasizes the critical role of adaptability and 
innovation in algorithmic forecasting, offering substantial implications for both financial market theory and 
practice. Building on insights from market microstructure theory, i introduce volatility- and volume-based 
exogenous variables into neural network architectures to capture the interplay of risk, liquidity, and potential 
investor sentiment effects. Our exhaustive modeling suite includes ARIMA-type approaches, exponential 
smoothing, and hybrid AI–statistical ensembles. Forecast performance is assessed through established error 
metrics (ME, MAE, RMSE, MPE, MAPE, MASE) and further evaluated by a simple trading simulation to gauge 
economic significance. Results show that no single model dominates uniformly: while simpler statistical 
methods (e.g., Naïve, SES) match or surpass more complex AI on very short horizons, neural networks 
incorporating exogenous volume and high–low prices often outperform over weekly to quarterly periods. This 
suggests mild market inefficiencies or delayed information assimilation at intermediate frequencies 
particularly evident when volatility clustering or liquidity shifts are high. However, on very long horizons, 
forecast advantages narrow, aligning with the notion of semi-strong market efficiency. 

KEYWORDS: Forecasting, Financial Markets, Predictive Analytics, Time Series, Neural Networks, Artificial 
Intelligence. 
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1. INTRODUCTION 

This paper compares four main forecasting 
approaches using both statistical techniques and AI, 
testing their accuracy on FTSE 100 companies. Data 
collected includes opening share price, closing share 
price, high and low price, adjusted closing price, and 
trading volume, though the closing share price is the 
central variable in the tests. This paper investigates 
the longstanding debate on whether artificial 
intelligence (AI) methods or traditional statistical 
techniques offer superior predictive power in 
financial markets, particularly under varying market 
efficiency conditions. I employ an extensive dataset 
of 18 FTSE 100 companies spanning 20 years, testing 
30 distinct forecasting models across multiple 
frequencies (daily, weekly, monthly, quarterly, 
yearly) and horizons (short- through long-term). In 
terms of economic relevance, selected AI-driven 
strategies yield notable improvements in risk-
adjusted returns (5–10% annualized), underscoring 
the value of integrating microstructure-informed 
signals. These findings advance forecasting research 
by demonstrating the nuanced interactions between 
frequency, horizon, and exogenous risk factors, and 
offer practical guidance to traders seeking robust yet 
flexible predictive frameworks.  

Four unique tests address horizon forecasting: 
1. Test 1: Applies the 80/20 rule (80% training 

data, 20% testing). 
2. Test 2: Uses the first 100 data points for 

training, then continuously adds one new data 
point before re-forecasting. 

3. Test 3: Same as Test 2 but includes new High 
and Low prices inputted into the neural 
network. 

4. Test 4: Same as Test 2 but introduces trading 
volume as an exogenous variable in the neural 
network. 

Hybrid functions (combining two methods) were 
also examined to see if they improved forecasting 
accuracy. With horizon analysis, the paper explores 
how forecasting performance changes at different 
time spans, testing daily, weekly, monthly and yearly 
frequencies with multiple horizons. These horizons 
align with trading intervals, such as daily, weekly, 
monthly, quarterly and yearly cycles. Understanding 
how horizon lengths affect accuracy is crucial, as 
some methods perform better in the short term while 
others excel in the long term. Examining input 
variables in neural networks is similarly important 
appropriate selection and training can significantly 
enhance forecasting outputs. Furthermore, 
uncertainty and volatility, combined with varying 
data ranges, shape forecasting accuracy. GARCH-

type models are often used to study volatility, while 
global economic policy uncertainties may also spill 
over locally. This understanding of volatility, 
uncertainty, and data ranges demonstrates that 
multiple factors affect forecasting accuracy.  

The overarching aim was to determine which 
forecasting methods produced the most accurate 
predictions based on a range of error measures (ME, 
RMSE, MAE, MPE, MAPE, MASE) and different 
modeling approaches. A special focus was placed on 
several variants of neural network-based approaches 
(collectively referred to as “Nymphy”), including 
those incorporating exogenous variables such as the 
High and Low prices alongside the Close price. These 
are contrasted with more conventional statistical 
forecasting methods such as ARIMA variants, Naïve 
forecasts, Exponential Smoothing (SES and Holt-
Winters), TBATS, BATS, and the THETAF method. In 
many cases, comparisons revolve around how well 
these methods perform across short and long 
horizons (ranging from 1-step-ahead up to 22-steps-
ahead for daily data, and similarly up to 12-steps-
ahead for weekly, monthly, and quarterly data). 
Closing prices, High and Low prices are perspective 
on the period of data, if the training data was yearly 
price movement the CP, HP and LP would be the 
assigned price for yearly period thus the closing price 
of the financial year, highest price for the financial 
year and low price of the financial year and that was 
implemented for all periods.  

2. BACKGROUND, RELEVANT 
LITERATURE AND HYPOTHESIS 
DEVELOPMENT  

Financial market forecasting has been a research 
focus for decades resulting in the development of 
many methodologies to study price movements and 
volatility and investor sentiment dynamics. 
Traditional statistical approaches consisting of 
ARIMA, GARCH together with exponential 
smoothing methods continue to dominate 
forecasting because of their straightforward nature 
and easy interpretation. The forecasting models work 
with static linear conditions despite falling short for 
accurately predicting non-linear patterns seen in 
financial data. Regression function is a basic analysis 
to find the relationship between target and inputs, 
and multiple linear regressions (MLR) are created as 
benchmarks for other models Li, et al, (2024) 

Powerful artificial intelligent technologies with 
machine learning and especially neural networks 
have become popular alternatives to analyze 
complex nonlinear patterns in large financial datasets 
because of their ability to sign intelligent predictions 
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Ampountolas,  (2023). According to Tealab et al. 
(2017) hybrid forecasting models demonstrate 
potential in resolving data debates and boosting their 
predictive identification across extensive periods of 
time. 

The literature now incorporates additional 
explanatory variables as an advancement towards 
better forecasting outcomes. These trading variables 
jointly with high/low price movements and external 
economic indicators supply supplemental data 
which standard analytical models typically neglect. 
Joseph et al. (2011) established internet search 
intensity as an indicator of investor behavior which 
forecasted trading volume and abnormal returns 
while Wei et al. (2017) utilized GARCH-MIDAS 
models to predict volatility based on global policy 
uncertainty metrics. Shortages in datasets affect 
forecasting models results in increased uncertainty 
Khan, et al (2022) 

Numerous gaps persist in being addressed within 
the existing literature. Systematic comparison of 
traditional methods to AI-based models consisting of 
neural networks does not exist for a comprehensive 
evaluation of multiple forecasting durations 
alongside horizons. Researchers have neglected to 
investigate the effects of incorporating exogenous 
variables such as price and trading data into 
synthetic intelligent forecasting models. Neural 
network applications in financial forecasting remain 
unclear because custom-built models lack explicit 
documentation of design approaches when 
researchers develop their own solutions instead of 
using commercially available packages. 

Multiple gaps in the literature are addressed 
through systematic model comparisons using 30 
forecasting techniques including ARIMA variants 
and neural network-based approaches with 
exponential smoothing methods across several time 
horizons and frequencies. This paper adds new 
knowledge to hybrid forecasting methodology 
literature when it incorporates volatility-based along 
with volume-based exogenous variables into neural 
networks(Yu, 2020). The research explores both 
practical and comparative aspects of artificial 
intelligence models along with classic approaches 
through an extensive evaluation of their real-world 
financial market forecasting accuracy. Subset models 
in AI such as machine learning and deep learning 
algorithms have great potential in improving 
forecasting Alroomi (2024). 

2.1. AI Perspective & Implementation In 
Financial Markets 

Trading in financial markets encompassing 

stocks, bonds, and currency exchanges has attracted 
considerable attention from scholars. Various models 
and algorithms, such as support vector regression 
(SVR), artificial neural networks (ANN), GARCH 
models, and hybrid approaches, have been employed 
to predict and improve trading performance. 

 SVR Models 

Sermpinis et al. (2015) proposed a hybrid Rolling 
Genetic Algorithm–Support Vector Regression (RG-
SVR) for trading the EUR/USD, EUR/JPY, and 
EUR/GBP exchange rates, finding it outperformed 
other established models in both trading efficiency 
and statistical accuracy. Similarly, wSVR models 
(weighted SVR) tested by Sermpinis et al. (2017) 
showed better performance than traditional SVR 
models, illustrating that nonlinear, non-stationary 
financial markets often require more advanced 
variants of SVR. 

 GARCH Models & Pair Trading 

Chen et al. (2017) applied smooth transition 
GARCH models to a pair trading strategy in the U.S. 
stock market and achieved significant annualized 
returns. Pair trading is grounded in mean reversion, 
allowing investors to exploit pricing disparities 
between paired stocks. 

 Multivariate Adaptive Regression & Linear 
Regression Splines 

Kurek (2014) studied equity block trades on the 
Warsaw Stock Exchange using these techniques, 
finding that block trades signal important 
information to investors, resulting in positive or 
negative abnormal returns. 

 Neural Networks 

Neural networks have been used to forecast GDP 
growth rates Sokolov et al, (2016) emphasize that 
well-selected inputs, technical or fundamental can 
enhance the performance of neural network models, 
often outperforming simpler statistical methods. 

 Investor Sentiment 

Investor behavior, as measured by internet search 
intensity Joseph et al, (2011) or specific sentiment 
indices Li, et al,  (2014), can forecast trading volume 
and abnormal stock returns. Online searches may 
signal interest from less sophisticated investors, 
influencing short-term trading patterns. 

• Trading Activities & Macroeconomic 
Forecasts 

Chatterjee (2016) and Erdogan et al. (2014) 
examined how stock market liquidity, volatility, and 
returns predict recessions. Lower liquidity often 
precedes recessions. Meanwhile, Arevalo et al. (2017) 
studied a filtered flag pattern strategy in the Dow 
Jones Industrial Average, finding dynamic technical 
trading rules can outperform simple buy & hold 
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strategies. 

 Financial Networks & Trading Performance 
Booth et al. (2014) showed that global financial 

institutions, with larger networks, trade more 
efficiently due to better access to order flows, 
although local institutions learn and eventually 
reduce this gap over time. 

Overall, research confirms that AI and statistics-
based models, coupled with carefully selected input 
variables, can substantially improve trading forecasts 
in different market settings. Combining advanced 
techniques (e.g., SVR, GARCH, neural networks) 
with considerations of volatility, horizon length and 
investor sentiment often produces more robust 
results. Forecasting financial markets is a daunting 
yet essential endeavor, as investors, analysts, and 
policymakers seek to predict price trends, minimize 
risks and optimize returns. Artificial Intelligence 
undeniably has a significant impact on society across 
various domains. Given the sheer complexity and 
dynamism of the market, myriad methods have been 
proposed: from statistical techniques such as 
autoregressive models (AR, MA, ARMA, ARIMA, 
GARCH, and their variants) to more recent artificial 
intelligence (AI) methods including neural networks, 
fuzzy logic, support vector machines (SVMs), and 
deep learning architectures. Researchers invariably 
grapple with the question: “Is there a perfect model 
for forecasting financial markets? “Despite the 
laudable advances in forecasting techniques, it 
remains clear that financial markets have several 
unique characteristics. First, their time series data 
often exhibit no stationarities, heavy tailed 
distributions, jumps, and abrupt changes. Second, 
market complexities are magnified by the interplay 
of human psychology, as investor sentiment and 
policy uncertainties strongly influence price trends 
and volatility. Third, there is a fundamental tension 
between short-term horizon and long-term horizon 
forecasting. Consequently, continuous research and 
development efforts are imperative to enhance the 
precision and dependability of distinguishing 
human-generated content from artificially generated 
content. The short-term horizon approach (e.g., daily 
or intraday) is typically pursued by high-frequency 
traders, while long-term horizon models (e.g., 
quarterly or annual) matter greatly for 
macroeconomic policy or corporate decision-making. 
Finally, risk management through robust 
measurement of volatility and tail risks remains 
integral to the practical success of any trading or 
forecasting model. This paper endeavors to explore 
these overlapping themes. First, I consider the 
significance of risk, uncertainty, and trading 

practices in financial markets. Second, I review 
findings regarding neural networks and statistical 
benchmarks for predicting market indices. Third, I 
address the growing trend of big data analytics and 
deep neural networks, offering insights into how 
new algorithms tackle nonlinearity. I then answer the 
question of whether forecasting necessarily 
optimizes returns. Finally, the discussion covers 
horizon testing, accurate metrics, and the ways in 
which uncertainty influences predictive 
performance. In weaving these threads together, I 
aim to provide a thorough overview of the current 
state of knowledge, while also highlighting the 
challenges inherent in financial market forecasting 
Gajamannage, et al (2023). Thus, I need to do much 
more on understanding how to produce forecasts 
capturing uncertainty Alroomi, et, al (2022) 

2.2. Risk And Trading In Financial Markets 

Understanding risk is pivotal in trading. Risk in 
financial markets arises from uncertain price 
fluctuations, abrupt regime shifts, volatility clusters, 
and myriad exogenous shocks. This section explores 
how scholars have approached the concept of risk, 
the metrics used to measure it, and the trading 
strategies that either mitigate or exploit it. 

According to Pham, et al, (2014), stock assessment 
and risk management form two core strategies used 
by practitioners to guide trading decisions. Financial 
markets, especially equities, are subject to rapidly 
changing dynamics, including uptrends, 
downtrends, or sideways moves. Integrating an 
explicit risk management plan into a trading system 
significantly enhances the probability of achieving 
above-average returns while limiting possible 
downside. Pham et al. (2014) developed a novel stock 
trading system by integrating Kansei evaluation 
methodology originally used to assess affective 
responses in design with a self-organizing map 
model. Their approach was tested on daily stock data 
from exchanges in the U.S. (NYSE and NASDAQ) as 
well as in Vietnam, with encouraging results in terms 
of reduced losses and improved risk-adjusted 
returns. 

In a similar line of research, Vella, et al (2016) 
explored the possibility of mitigating risk and 
handling uncertainty in high-frequency trading 
contexts. They emphasized that market 
microstructure noise at very high trading frequencies 
aggravates the uncertainty embedded in price and 
volatility dynamics. The researchers proposed an 
interval type-2 model based on a generalization of a 
type-1 ANFIS (Adaptive Neuro-Fuzzy Inference 
System). Known as ANFIS/T2, this model not only 
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improves risk-adjusted performance but also 
contains computational complexities. Their results 
confirmed that more sophisticated fuzzy and neuro-
fuzzy systems can provide valuable tools for coping 
with market risk, ultimately aiding regulators, 
practitioners, and researchers in designing risk 
management protocols. 

Another angle in risk management involves 
identifying time windows or market segments 
wherein risk is more pronounced. Riedel, et al (2015) 
investigated tail risk, especially lower tail downside 
risk, by employing GARCH models for returns of 
stock markets in the United States, Japan, Germany, 
and France. Their surprising finding was that 
overnight return innovations displayed a significant 
tail risk while intraday innovations did not. 

In contrast to these studies focusing on exogenous 
and microstructure factors, Shoji, et al (2016) delved 
into the realm of behavioral finance. Relying on 
prospect theory, they used numerical simulations to 
demonstrate that “risk-seeking in losses” is a key 
driver in generating the disposition effect (the 
observed tendency of investors to hold onto losing 
positions too long and sell winning ones too soon). 
Indeed, Barberis, et al (2009) had stressed that the 
value function in prospect theory makes investors 
risk-averse in gains while being risk-seeking in 
losses. Thus, risk extends beyond purely quantitative 
definitions, intertwining with investor psychology to 
shape actual market outcomes. 

2.3. Nonlinearity Versus Linearity And The 
Emergence Of Hybrid Approaches 

Nonlinearity remains a central theme: many 
market time series exhibit structural breaks, abrupt 
shifts, cyclicality, and strong interactions across 
multiple time scales. Traditional linear ARIMA or 
ARMA models struggle to capture dynamic 
behaviors unless augmented with regime-switching 
or threshold components. In this sense, neural 
networks, SVMs, or GARCH variants frequently 
provide better fits. 

Tealab, et al (2017) classify time series by their 
linearity behavior, maintaining that linear time series 
forecasting might be sufficient for well-behaved data 
sets, but real-world financial markets rarely remain 
stable or linear. Tellingly, the authors note that 
“common neural networks” often are not sufficient 
for dynamic behavior with moving average terms. 
Deep learning or hybrid combinations of fuzzy logic, 
wavelets, or evolutionary optimization might be 
necessary. 

Deep convolutional networks have had particular 
success in pattern recognition tasks such as 

handwriting verification or image-based algorithmic 
trading signals Hafemann, et al (2017). Support 
vector machines (SVMs) also remain popular, 
especially for classification tasks or stock direction-
of-change predictions Tay, et al (2001). 

Studies show that shallow MLPs or feedforward 
neural networks occasionally fail to find global 
minima Kuremoto, et al (2014). Deep belief networks 
comprising stacks of restricted Boltzmann machines 
can mitigate some local optima issues. Moreover, big 
data analytics provide new frontiers for deep 
learning in tasks such as semantic indexing of large 
text corpora, unstructured data mining, or anomaly 
detection in real-time trading. Najafabadi, et al (2015) 
stressed that unsupervised deep learning methods 
can parse massive volumes of unlabeled data, 
revealing hidden correlations or latent features. 

Nonetheless, as pointed out by Tealab et al. (2017), 
any forecasting success with deep networks is 
dependent on how well the architecture is suited to 
the problem’s time scale, the stationarity or 
nonstationary of data, and the richness of the 
available features. For certain tasks especially short-
horizon forecasting a simpler ARIMAmight 
outperform large-scale deep networks if data are 
limited or the series is stable. By contrast, in contexts 
of big data, complex patterns, and high noise, deeper 
architectures often shine. 

2.4. Inking Forecast Accuracy And Trading 
Returns 

An enduring question in finance is: even if a 
model has strong forecasting accuracy, does that 
necessarily translate into higher trading profitability? 
To address this, many scholars have designed 
trading simulations with transaction costs, slippage, 
and real-time constraints. 

Choudhry, et al (2012) utilized artificial neural 
networks to predict foreign exchange rates (USD-
EUR, DEM-USD, JPY-USD) at high-frequency. They 
discovered that an active trading strategy using the 
ANN’s buy/sell signals was profitable net of 
transaction costs. This implies that certain 
microstructure variables (like bid-ask spreads and 
last trade price) can be harnessed for short-horizon 
profitability, a reflection of the real-time 
informational advantage of the model. 

On the equity side, Bekiros, et al (2008) studied 
recurrent neural networks to forecast direction-of-
change in the NASDAQ index. They integrated 
measures of volatility changes into the RNN-based 
trading rule, finding that it not only outperformed a 
standard buy-and-hold approach but also remained 
profitable after accounting for transaction costs. 
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RNNs, in capturing short-term memory and 
dynamic patterns, seemed adept at timing the 
market. 

Dunis, et al (2002) aimed to forecast volatility for 
GBP/USD and USD/JPY exchange rates. They then 
constructed a trading strategy around options 
straddles, capitalizing on mispriced implied 
volatility. Similarly, they reported positive net 
returns from the nonparametric, RNN-based 
approach. Meanwhile, Sokolov, et al (2016) observed 
that ANN-based strategies for macroeconomic 
forecasting (e.g., using trade parameters) can yield 
improved portfolio decisions in practice. 

Other research explored SVM-based trading rules. 
Dunis, et al, (2013) examined whether SVM 
predictions of weekly change in the Spanish IBEX-35 
outperformed MLP or buy-and-hold strategies, 
concluding that SVM accuracy was high but sensitive 
to the length of training data. Qu, et al (2016) tackled 
high-frequency returns of the Chinese CSI 300 index 
with support vector regression. By proposing a novel 
kernel function to capture cyclicality and decaying 
influences of past returns, they achieved superior 
directional accuracy and higher capital gains. 

These studies illustrate that while accuracy alone 
does not guarantee profits, many advanced AI 
models particularly neural networks and SVMs 
demonstrate real-world potential when carefully 
adapted. Yet, each must be tested rigorously under 
robust simulation conditions that incorporate 
realistic costs and constraints. 

2.5. Methodological Considerations For Testing 
Multiple Models 

In a practical sense, designing an empirical study 
to identify a “best model” typically involves the 
following steps: 

1. Data Collection and Frequency Setting 
Researchers decide which markets (e.g., equities, 

currencies, commodities) and which instruments or 
indices (e.g., S&P 500, DJIA, IBEX-35, CSI 300) to 
include. They also choose frequency daily, weekly, 
monthly, or intraday (15-minute, 30-minute bars) in 
alignment with the horizons they wish to forecast. 

2. Multiple Methods Selection 
As the overarching research question suggests, it 

is vital to test both widely used statistical models 
(ARIMA, GARCH variants, logistic regressions) and 
popular AI methods (MLP, RNN, SVM, deep 
learning). Then, additional hybrid or ensemble 
approaches might be added, e.g., GARCH-MIDAS 
with exogenous variables or ANFIS with fuzzy logic. 

3. Exogenous Regressors and External Inputs 

Including fundamental data (e.g., interest rates, 

GDP, inflation), technical indicators (RSI, MACD, 
moving averages), or sentiment measures (investor 
sentiment, web search intensity, news analytics) can 
significantly affect model performance. The success 
of these inputs depends on their correlation with 
future returns or volatility. 

4. Implementation and Training 

Each model is trained on historical data (in-
sample). Hyperparameters for neural networks 
might be tuned using cross-validation or 
grid/random search. The final model is then tested 
on out-of-sample data to assess generalization. 

5. Accuracy and Profitability Checks 
Common error metrics (RMSE, MAE, MAPE, 

Theil’s U,) are calculated. If a trading strategy is 
tested, performance metrics might include net 
returns, Sharpe ratios, maximum drawdown, and 
other risk-adjusted performance measures. 

6. Comparison and Robustness Analysis 
The next step is to check whether one model 

outperforms the others consistently or only in certain 
market regimes or time windows. Statistical 
significance tests like Diebold–Mariano or Model 
Confidence Set add rigor, while scenario analyses 
(e.g., sub-periods, crisis vs. non-crisis years) gauge 
robustness. 

In practice, the variety of possible combinations 
(algorithm × horizon × frequency × input set) often 
leads to an enormous search space. It is not 
uncommon for academic studies to limit their scope 
due to computational or data constraints, which 
helps explain why no single “perfect model” 
emerges. 

The literature suggests that while certain models 
consistently outperform others in specific scenarios, 
no single approach reigns supreme across all 
conditions. Neural networks, especially deep 
learning methods, have demonstrated capacity for 
capturing highly nonlinear patterns and gleaning 
hidden features from big data. However, they can be 
susceptible to overfitting, require extensive 
computational resources, and may be difficult to 
interpret. Statistical techniques such as ARIMA or 
GARCH are simpler and remain powerful when the 
data exhibits certain stationarity or structure, but 
they often struggle with abrupt regime changes. 

Risk management remains paramount. Models 
that track or predict tail risk, volatility jumps, or 
macroeconomic instability can be especially 
valuable. The synergy between advanced volatility 
modeling (GARCH-MIDAS) and external 
explanatory variables (like policy uncertainty 
indices) has yielded consistent improvements, 
particularly in daily or monthly volatility forecasts. 
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Research on forecast horizons underscores that 
predictive accuracy for longer horizons frequently 
declines, but not always. In some contexts, horizon-
specific calibration or combining forecast horizons 
can preserve accuracy. The practical question for 
financial market participants is whether short-term 
or long-term predictions better align with their 
investment strategies or policy objectives. 

Finally, the question “Is there a perfect model for 
forecasting financial markets?” persists. Given that 
markets evolve, conditions change, and investor 
psychology can shift unpredictably, it seems 
improbable that any single approach is universally 
optimal. Nonetheless, the ever-growing 
sophistication of AI, big data analytics, and ensemble 
methods continues to push the boundary, making 
forecasting more robust, and perhaps in the future, 
bridging the gap between theoretical accuracy and 
real-world profitability. 

A broad spectrum of models were tested: 
NNET_THETAF (Neural Networks with Theta 

Model) 
(y_t)=f(WX+b)+θ⋅y_t+(1-θ)⋅T_t,(1)                                                      
Where:  
(y_t ) ̂ predicted value at time t.  
f Neural network function capturing nonlinear 

relationships. 
W Weight matrix for the neural network. 
X Input features vector. 
b Bias term in the neural network. 
θ Parameter balancing actual and trend 

components. 
y_t Actual observed value at time t. 
T_t Trend component from the Theta model. 
⋅ Multiplication operator. 
(1-θ) Complementary fraction to θ. 
This equation merges a neural network’s NNET 

(Neural Networks for Time Series) y_t=f(WX+b)   
capacity to capture nonlinear patterns with the Theta 
model’s (THETAF (Theta Model)( y_t ) ̂=θ⋅y_t+(1-
θ)⋅T_t robust trend estimation, enhancing forecast 
accuracy for time series data. By incorporating both 
the raw series y_t and its trend component T_t. The 
model adeptly balances short-term fluctuations with 
long-term growth or decline. The parameter θ 
dictates the weight of each component, enabling 
flexibility across various market or environmental 
scenarios. Widely adopted in financial analytics, 
demand forecasting, and climate modeling, it 
leverages deep learning pattern extraction alongside 
the Theta method’s proven reliability, delivering 
improved prediction performance and 
interpretability across numerous real-world 
applications in diverse industries. 

NYMPHY_EXOGONOUS_CLOSE (Neural 
Network with Exogenous Variables) 

                                        (y_t 
) ̂=f(WX+b+Z_t^exogenous )                                                                       
(2) 

Where: 
(y_t ) ̂ predicted value at time t.  
f Neural network function capturing nonlinear 

relationships. 
W Weight matrix for the neural network. 
X Input features vector. 
b Bias term. 
Z_t Exogenous variable. 
This model integrates exogenous variables Z_t 

into a neural network, capturing external factors that 
traditional endogenous-only approaches overlook. 
By including an Exogenous variable, the network 
identifies correlations that enrich prediction 
accuracy. Weight parameters W and bias b optimize 
how these inputs interact with the primary features 
X. This approach is particularly valuable in financial 
forecasting, where influences like 10% increase on 
decrease in closing price changed significantly affect 
market trends 

NYMPHY_CLOSE_HIGH (Neural Network with 
Close and High Prices) 

                                         (y_t 
) ̂=f(WX+b+Z_t^"close" +Z_t^"high"  )                                                       
(3) 

Where:  
(y_t ) ̂ predicted value at time t.  
f Neural network function capturing nonlinear 

relationships. 
W Weight matrix for the neural network. 
X Input features vector. 
b Bias term. 
Z_t^"close"  Closing price input. 
Z_t^"high"  High price input. 
By incorporating both the closing and high prices 

as inputs, this neural network model captures a 
broader range of market dynamics. The weights W 
and bias b adapt to how these features combine with 
the core input X, enabling the function f to detect 
patterns associated with price volatility and 
momentum shifts. In financial forecasting, high 
prices often signal peaks or intraday sentiment, while 
closing prices reflect consolidated market conditions. 
This dual-price approach empowers traders, risk 
analysts, and automated systems with richer insights 
for better decision-making. Its predictive power 
significantly extends to algorithmic trading, asset 
valuation, and proactive risk mitigation. 

NYMPHY_CLOSE_LOW (Neural Network with 
Close and Low Prices) 
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                                        (y_t 
) ̂=f(WX+b+Z_t^"close" +Z_t^"low"  )                                                          
(4) 

Where:  
(y_t ) ̂ predicted value at time t.  
f Neural network function capturing nonlinear 

relationships. 
W Weight matrix for the neural network. 
X Input features vector. 
b Bias term. 
Z_t^"close"  Closing price input. 
Z_t^"low"  High price input. 
This neural network architecture incorporates 

closing and low-price data, offering enhanced 
sensitivity to market fluctuations and risk signals. 
Low prices can reveal intraday troughs or support 
levels, while closing prices summarize the day’s final 
sentiment. By combining these inputs with the 
network’s weight matrix W and bias b, the function f 
can more accurately predict future values, especially 
under volatile conditions. Common in financial risk 
management and algorithmic trading, this approach 
identifies significant downside trends and highlights 
potential entry points.  

NYMPHY_CLOSE_HIGH_LOW (Neural 
Network with Close, High, and Low Prices) 

Equation: 
                                        (y_t 

) ̂=f(WX+b+Z_t^"close" +Z_t^"high" +Z_t^"low"  )                                             
(5) 

Where:  
(y_t ) ̂ predicted value at time t.  
f Neural network function capturing nonlinear 

relationships. 
W Weight matrix for the neural network. 
X Input features vector. 
b Bias term. 
Z_t^"close"  Closing price input. 
Z_t^"high"  High price input. 
Z_t^"low"  High price input. 
This comprehensive neural network model 

enriches time series forecasting by integrating 
closing, high, and low prices. It reveals a detailed 
picture of price movements, capturing both 
maximum peaks and potential support levels 
alongside final daily sentiments. These inputs feed 
into the weighted function f, allowing for nuanced 
detection of emerging trends, market volatility, and 
sentiment shifts. In financial contexts, such multi-
price integration boosts the model’s responsiveness 
to intraday volatility and end-of-day market stance.  

3. Data, methodology and output 
The data for this paper was collected from 18 

companies listed on the FTSE 100 index. The selection 

criteria prioritized the most capitalized companies 
within the index, ensuring that the dataset 
represented the largest and most influential firms. To 
maintain consistency and comparability across the 
dataset, the unit measure was standardized across all 
companies, rather than aligning solely with the dates 
of share prices. Consequently, the dataset comprised 
daily (4000 units), weekly (825 units), monthly (191 
units), quarterly (65 units), and yearly (17 units) 
observations, covering the period from 2000 to 2016. 
The data collected included the high, low, close, 
adjusted close, volume, and % of change for the 
selected companies' share prices. 

Here, I measure the forecasting accuracy using 
two different approaches according to the forecasting 
period. For monthly data I forecast 18 months ahead 
using all the methods used. After the forecast, I test 
our six different error matrices for each method and 
each frequency. After the error has been developed, I 
analyze the matrices according to a set of ranking 
points. Here, fewer points are awarded for fewer 
errors, thus the method with the least points is the 
more accurate. 

The second approach tests the accuracy between 
methods and horizons. The forecasting here uses 
different training data to that used in the first 
approach where I used all data points as training data 
from the beginning. However, in the second 
approach I used progressive continuous addition of 
training data. In the first approach, I used the first 100 
data points to forecast 18 horizons; the next data 
point and training data was re-computed to produce 
a sequence of 18 horizons. This procedure applies to 
all of the remaining datasets. 

The methodology tested in this paper employs a 
quantitative approach to compare a diverse range of 
forecasting methods, spanning both statistical 
techniques and artificial intelligence (AI). A total of 
30 methods were tested, comprising 23 statistical 
techniques and 7 AI models. The remaining two 
methods were excluded from the analysis due to 
their inability to produce outputs or adapt to the 
time-series data. The adaptability of certain models 
was contingent on the presence of seasonality in the 
data. In cases where the time series lacked 
seasonality, these models failed to compute forecasts 
and yielded no results. All statistical methods were 
implemented using R software, while Python was 
employed for the AI method. The tested methods 
represent widely used techniques in the forecasting 
field. However, their performance often depends on 
the characteristics of raw data. As noted, models 
reliant on seasonality may perform poorly or result 
in non-applicable (NA) outputs when such patterns 
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are absent in the dataset. This highlights the 
importance of aligning the chosen methodology with 
the underlying properties of the data to ensure 
reliable and meaningful results. Complete 
optimization is impossible when it comes to 
forecasting different academics debate what to 
optimize and how to implement their models. 
However, there are more widespread theories out 
there which many scholars do use and agree on. In 
our model under error testing, the more commonly 
used errors matrices: Mean Error (ME)  

                                                     ME=1/N   

∑_(i=1)^N▒〖(f_i-k_i)〗                                                                               
(6) 

Where: 
N = # observations 
f_i = represents the predicted value for the 

i^thobservation  
k_i = represents the actual value for the i^th 

observation 
(f_i-k_i) = represents the error for the i^th 

observation 
Mean Absolute Percentage Error (MAPE) 
                                                MAPE=1/N   

∑_(i=1)^N▒〖((|f_i |-|k_i |)/|k_i | )〗 x 100                                                             
(7) 

Where:  
((|f_i |-|k_i |)/|k_i | )= represents the absolute 

error for the i^th observation 
Mean Percentage Error (MPE) 
                                                 MPE=1/N   

∑_(i=1)^N▒〖((f_i-k_i)/k_i )〗 x 100                                                         
(8) 

Where:  

1/N   ∑_(i=1)^N▒〖((|f_i |-|k_i |)/|k_i | )〗 x 

100 = with the exclusion of absolute value  
Mean Squared Error (MSE)  
                                                   MSE=1/N   

∑_(i=1)^N▒〖(f_i-k_i)〗^2                                                                            
(9) 

〖(f_i-k_i)〗^2 = represents the squared for the 
i^th observation 

Root Mean Squared Error (RMSE) 
                                                        √(1/N   

∑_(i=1)^N▒〖(f_i-k_i)〗^2 )                                                                
(10) 

Where: 

The square root of 1/N   ∑_(i=1)^N▒〖(f_i-k_i)〗
^2  is calculated 

 Mean Absolute Error (MAE) 
                                                          1/N   

∑_(i=1)^N▒〖|f_i |-|k_i | 〗                                                               
(11) 

Mean Absolute Scaled Error (MASE)  

                                                       q_t=  e_t/(1/(n-1)   
∑_(i=1)^n▒(|Y_i- Y_(i-1) |) )                                                
(12) 

Where: 
e_t = f_i-k_i which indicates the error at time t  
Y_i = represents the actual value for the i^th 

observation 
Y_(i-1) = represents the actual value -1  indicating 

previous for the i^th observation 
Log returns were also determined by the model, 

with the same capacity as the error matrices 
calculation. Furthermore, as six different error 
matrices were tested, the scale of the test itself 
increases and develops a more determined and 
detailed conclusion as I can conclude which function 
is more accurate under the different circumstances 
mentioned. The results that are presented are a mere 
fraction of the results that were produced. The total 
output will be freely available upon request. Due to 
the size of the total output, I were unable to showcase 
all the results. Furthermore, the vast output that was 
computed presented us with the dilemma of how to 
be fair and consistent when presenting the results 
from our horizon testing. Therefore, in a 
commanding rule, the paper presents the absolute 
percentage error (APE) & (MSE) accuracy tests.  

Table 1: Title caption. 
Methods Description 

1. NYMPHY_EXOGONOUS_CLOSE 
Neural Network 
with exogenous 

variables 

2. NYMPHY_CLOSE_HIGH 
Neural Network 
with Close and 

High share price 

3. NYMPHY_CLOSE_LOW 
Neural Network 
with Close and 
Low share price 

4. NYMPHY_CLOSE_HIGH_LOW 

Neural Network 
with Close, High 
and Low share 

price 

The tested models here are the neural networks 
testing uncertainty. Nymphy was the function tested 
in this paper. The algorithm was constructed to test 
whether the volatility of the share price could predict 
the future for that share price. The table below 
presents the results from our test for each method. 
The methods were tested under the six error matrices 
above. This shows us which method performed 
better under which error. A detailed table on the 
classification of accuracy testing shows an overview 
of how the methods are performed. The table below 
reveals strength in the random walk forecast (RWF) 
and the mean in the mean error (ME) test, but this 
strength diminishes along with the error matrices. 
Specifically, the mean became the least accurate test 
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in all the other error testing apart from the mentioned 
ME test. The naïve model showed better accuracy 
than the other models in three of the six accuracy 
tests, performing better in MAE, MAPE and MASE. 
Neural networks and the Holt-Winters performed 
better in RMSE and MPE, respectively. The Nnet 
function would take advantage of the RMSE high 
values and variance thus here being uncertainty and 
thus meaning nonlinearity of the test would 
eventually perform better. 

Table: 2: Title caption. 
Models Weekly  Values     

 ME RMSE MAE MPE 
MAP

E 
MAS

E 
AVE 

AUTO 0.577 85.463 57.664 -0.407 5.961 0.963 25.037 

SES 0.577 85.463 57.664 -0.407 5.961 0.963 26.547 

HOLT 0.267 86.895 58.387 -0.313 6.047 0.983 25.378 

BATS & 
TBATS 

-0.308 86.332 58.239 -0.750 5.952 0.980 25.074 

DSHW 1.063 95.586 64.763 1.092 7.916 1.091 28.585 

NAIVE 
& 

SNAIVE 
5.738 88.257 59.434 -0.317 6.042 1.000 26.692 

NNET -0.051 82.118 56.562 -0.739 5.714 0.939 24.091 

SPLINE 
898.46

4 
1252.45

6 
1073.24

6 
73.50

9 
80.697 NA NA 

THETA
F 

5.880 87.759 58.980 -0.335 6.004 0.992 26.547 

RWF 0.000 87.679 58.843 -0.322 6.074 0.992 25.544 

MEAN 0.000 452.212 395.048 
-

57.12
7 

79.138 6.289 
145.92

7 

AUTO 
% SES 

188.54
3 

530.967 438.400 
15.89

2 
31.776 6.290 

201.97
8 

AUTO 
% 

TBATS 
94.809 449.495 364.327 

12.97
0 

29.857 5.713 
159.52

8 

AUTO 
% 

NNET 

193.75
3 

549.685 459.314 
15.37

7 
32.748 6.507 

209.56
4 

SES & 
THETA

F 

209.28
5 

564.813 470.709 
19.44

6 
34.611 6.290 

217.52
6 

SES % 
MEAN 

493.43
1 

668.433 599.344 
-

11.46
6 

57.966 8.685 
302.73

2 

TBATS 
& 

THETA 

115.55
0 

466.547 381.223 
16.52

4 
32.233 6.313 

169.73
2 

NNET & 
THETA 

188.54
3 

530.967 438.400 
15.89

2 
31.776 6.290 

201.97
8 

In our weekly tests, the neural network model 
performed significantly better than other models in 
four out of the six error matrices, beating the naïve 
model in the weekly test where the random walk 
model had performed better in one out of the six 
error matrices. The neural network performed better 
in the following errors: RMSE, MAE, MAPE, and 
MASE. The high performance in four errors shows 
that there is more nonlinearity in the weekly test 

where Nnet recorded better performance under the 
mentioned conditions. The lowest performing model 
was produced by the spline model, which had the 
least accurate results in four out of the six error 
measurements. RMSE, MAE, MPE, and MAPE were 
the measurements where the spline model showed 
its weakness. 

Table 3: Analysis & Evaluation. 

 

Classificatio
ns of 

Accuracy 
Testing 

 
 

    

 ME RMSE MAE MPE MAPE MASE 

Daily 
1st 

Daily 
LE 

!RWF&MEA
N 

SES%MEAN
^ 

NNET 
MEA

N 

NAÏV
E 

MEA
N 

HOLT 
MEA

N 

NAÏV
E 

MEA
N 

NAÏVE 
MEAN 

Weekl
y 1st 

Weekl
y LE 

!RWF/MEA
N 

SES%MEAN
^ 

NNET 
SPLIN

E 

NNET 
SPLIN

E 

HOLT 
SPLIN

E 

NNET 
SPLIN

E 

NNET 
SES/MEA

N^ 

* (LE) here meaning least accurate model. ^ Here 
represents a hybrid model combining two functions. 
& here meaning a joint accurate best accurate model. 
So, both methods have the same result of error. ! Net 
was very close behind with -0.0043.  

As seen from the tables above, both neural 
networks and the naïve methods have performed 
very well in the test run. As the RWD enforced its will 
upon other models, Nnet performed better in the 
weekly frequency and almost did so in the daily 
frequency. If an average of the errors was taken for 
each method, neural networks performed better in 
both daily and weekly frequencies. This also takes 
into consideration that the neural network test was 
implemented with a single input and no alternative 
inputs were chosen for the network to learn, work, 
and develop.  

Table: 4: 

 
Classifications 

of Accuracy 
Test 

 
 

    

 Daily 
Weekl

y 
Monthl

y 
Quarterl

y 
Yearl

y 
Total 

ME 48.78 4.12 1.199 0.221 0.018 54.338 

MAE 48.78 4.12 1.199 0.221 0.018 54.338 

MAPE 48.78 4.12 1.199 0.221 0.018 54.338 

MPE 48.78 4.12 1.199 0.221 0.018 54.338 

MSE 48.78 4.12 1.199 0.221 0.018 54.338 

RMSE 48.78 4.12 1.199 0.221 0.018 54.338 

TOTAL 292.68 24.72 7.194 1.326 0.108 
326.02

8 

The table above shows the errors that were 
produced, calculated and tested. Due to the 
significant number of errors that were tested, the 
implemented test was carried out on the HPC Wales 
supercomputer (cloud). The implementation of the 
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test in this paper would have taken over a year on a 
normal everyday computer. At first, the 
implementation was carried out on a Dell XPS I7 
laptop but after a few weeks of running the test was 
stopped. At this point, the notion of using a 
supercomputer arose, while there were also some 
clouds and clusters to consider. Finally, a decision 
was taken to implement the test on the HPC Wales 
supercomputer cloud. The test took 44.5 hours on 45 
cores. This was due to the high computation being 
run. At the start of our code being run on the HPC 

cloud was going to result in a significant difference 
time wise to run the code. However, after 
introducing parameters to the test and implementing 
dynamic arrays, the time was reduced. However, 
there was more effort taken to reduce the time that it 
would take to reduce the time the test was taken, in 
effort to do that, the methods were allocated to 
individual cores and the more computationally 
intensive functions were allocated more cores. The 
forecasts produced according to the actuals of the 
company’s stock price are publicly available data. 

Table: 5: 
DAILY APE         

METHOD     HORIZON     

 1 2 3 4 5 10 22 1-10 1-22 

AUTO_ARIMA 0.014 0.020 0.024 0.028 0.031 0.045 0.067 0.031 0.045 

AUTOARIMA_FOURIER 0.013 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041 

AUTOARIMA_NNET 1.106 1.105 1.103 1.103 1.103 1.102 1.102 1.103 1.102 

AUTOARIMA_SEASDUMMY 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041 

AUTOARIMA_SES 1.106 1.106 1.106 1.106 1.107 1.108 1.110 1.107 1.108 

AUTOARIMA_TBATS 1.106 1.107 1.107 1.107 1.107 1.109 1.112 1.108 1.109 

BATS 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041 

DSHW_DAILY 0.016 0.022 0.026 0.030 0.033 0.045 0.068 0.033 0.047 

HOLT 0.013 0.019 0.023 0.026 0.030 0.042 0.062 0.030 0.043 

HOLT_WINTERS 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041 

MEANF 0.801 0.802 0.803 0.803 0.804 0.806 0.813 0.804 0.807 

naïve 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041 

NNET 0.017 0.025 0.032 0.038 0.044 0.067 0.104 0.045 0.068 

NNET_THETAF 1.105 1.103 1.102 1.101 1.100 1.096 1.088 1.100 1.095 

RWF 0.013 0.019 0.023 0.027 0.030 0.042 0.062 0.030 0.043 

SES 0.013 0.019 0.019 0.023 0.023 0.026 0.026 0.029 0.030 0.041 0.042 0.059 0.062 0.029 0.031 0.041 0.045 

SES_MEAN 0.923 0.923 0.922 0.922 0.922 0.921 0.917 0.922 0.920 

SES_THETAF 1.105 1.105 1.105 1.104 1.104 1.101 1.096 1.103 1.101 

SINDEX 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041 

SNAIVE 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041 

STL 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041 

TBATS 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041 

TBATS_THETAF 1.106 1.106 1.105 1.105 1.104 1.102 1.098 1.104 1.102 

THETAF 0.013 0.019 0.023 0.026 0.029 0.041 0.060 0.029 0.042 

TSLM 0.013 0.019 0.023 0.026 0.029 0.041 0.059 0.029 0.041 

The first table of our results section shows the 
output results for our tested APE and the table shows 
specifically the daily output. The winning method 
from each horizon is presented in bold and the 
median for the same horizon is presented in italics 
(this is carried over through all results).In our daily 
APE results, the simple exponential smoothing (SES) 
takes over the accuracy testing from the second 
horizon on, becoming more accurate even when the 

horizons were averaged, demonstrating its near 
monopoly of the daily APE. However, the Autoarima 
Fourier had its say when it came to the first horizon. 
Whereas both SES and Autoarima_Fourier both 
show 0.13 in the first horizon Autoarima Fourier 
performed better on the 4th decimal. 

 

Table: 6: 
daily ape         

METHOD     HORIZON     

 1 2 3 4 5 10 22 1-10 1-22 

close 0.024248 0.024247 0.024245 0.024244 0.024243 0.024237 0.024219 0.024242 0.024234 

close_high 0.024895 0.024894 0.024894 0.024894 0.024893 0.024889 0.024873 0.024892 0.024886 

close_high_low 
0.016707 
0.021847 

0.016708 
0.021847 

0.016708 
0.021847 

0.016708 
0.021848 

0.016708 
0.021848 

0.016708 
0.021847 

0.016702 
0.021843 

0.016708 
0.021848 

0.016706 
0.021847 

close_low 0.019447 0.019448 0.019449 0.019451 0.019452 0.019458 0.019467 0.019453 0.019459 
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ses 
0.013289 
0.013383 

(AUTOARIMA_FOURIER) 

0.018832 
0.018959 

0.022836 
0.023048 

0.026175 
0.026486 

0.029162 
0.029591 

0.040821 
0.042036 

0.059134 
0.062275 

0.029275 
0.031007 

0.041303 
0.045043 

The daily APE results for the Nymphy model and 
the winning method from TEST 2 are shown above, 
with very interesting results. Produced from 4 
thousand data points, the method close_high_low 
shows very consistent results going from horizon 1 
through to horizon 22, however that is not the case 
for the best method carried over from TEST 2, only 
beating the close_high_low method on the first 
horizon only where it was not the SES method but 
rather the Autoarima_Fourier method. 

Table:7. 
monthly ape        

METHOD     
HORI
ZON 

   

 1 2 3 4 9 18 1-9 1-18 

close 
0.110
653 

0.109
91 

0.108
936 

0.108
032 

0.10280
2 

0.095
695 

0.106
916 

0.102
559 

close_high 
0.048
861 

0.048
67 

0.048
108 

0.047
595 

0.04581
9 

0.044
107 

0.047
275 

0.045
935 

close_high_
low 

0.043
350 

0.048
346 

0.043
355 

0.048
161 

0.043
174 

0.047
784 

0.042
933 

0.047
416 

0.04201
9 

0.04570
5 

0.041
146 

0.043
429 

0.042
735 

0.047
049 

0.042
062 

0.045
658 

close_low 
0.047
832 

0.047
652 

0.047
460 

0.047
237 

0.04559
1 

0.042
753 

0.046
823 

0.045
381 

autoarima_
fourier 

0.056
734 

0.059
492 

0.081
133 

0.086
376 

0.100
575 

0.108
120 

(NAÏ
VE) 

0.118
678 

0.129
480 

0.19923
5 

0.23074
1 

0.349
945 

0.442
083 

0.133
154 

0.150
454 

0.206
680 

0.242
198 

Producing the same outcome as the daily APE, the 
weekly results show us how uncertainty can produce 
better results. Furthermore, where in the daily results 
the winning method for horizon 1 did perform better 
than the close_high_low method, here the 
close_high_low method performed stronger even 
one horizon ahead. 

Table: 7. 
quarterly ape        

METHOD     
HORI
ZON 

   

 1 2 3 4 8 12 1-6 1-12 

close 
0.496
267 

0.495
893 

0.495
791 

0.497
656 

0.5081
13 

0.533274 
0.497
914 

0.507
351 

close_high 
0.265
978 

0.266
474 

0.267
439 

0.269
942 

0.2784
73 

0.291858 
0.269
350 

0.276
379 

close_high
_low 

0.164
642 

0.285
519 

0.165
393 

0.286
098 

0.166
231 

0.286
737 

0.167
947 

0.289
040 

0.1749
09 

0.2983
42 

0.183577 
0.312349 

0.167
552 

0.288
737 

0.172
817 

0.296
064 

close_low 
0.305
061 

0.305
721 

0.306
035 

0.308
139 

0.3182
11 

0.332839 
0.308
124 

0.315
750 

autoarima
_fourier 

0.108
245 

0.120
869 

0.164
416 

0.190
705 

0.213
086 

0.252
326 

0.262
497 

0.321
027 

0.5386
82 

0.6280
08 

0.508976 
0.832367 
(SES_TH

ETAF) 

0.239
539 

0.286
677 

0.441
059 

0.565
188 

The quarterly APE outcome also shows us how 
the close_high_low method can perform better than 
all other neural network methods tested here and can 
also perform stronger and more consistently than the 
strongest methods from TEST 2. However, in this 
case, the most accurate method from TEST 2 did 
perform better one horizon and two horizons ahead, 
however it lost accuracy after that. Meanwhile, to 
compare the close_high_low showed that it was 
consistent moving from one horizon to the next, this 
is because it did not lose accuracy as quickly as the 
methods from TEST 2. 

Table: 8. 
yearly ape      

METHOD     
HORI
ZON 

 

 1 2 3 4 1-2 1-4 

close 
0.647
111 

0.651
285 

0.676842 0.715215 
0.64919

8 
0.672
613 

close_hig
h 

0.217
690 

0.218
180 

0.229277 0.248240 
0.21793

5 
0.228
347 

close_hig
h_low 

0.164
094 

0.252
530 

0.166
871 

0.250
952 

0.179122 
0.262187 

0.196443 
0.282098 

0.16548
3 

0.25174
1 

0.176
632 

0.261
942 

close_low 
0.287
370 

0.283
723 

0.295097 0.315955 
0.28554

6 
0.295
536 

thetaf_yea
rly 

0.238
219 

0.451
838 

0.324
738 

0.558
452 

0.428134 
0.936784 

(NNET_TH
ETAF) 

0.422913 
1.294401 

(NNET_TH
ETAF) 

0.28147
8 

0.50514
5 

0.400
210 

0.747
618 

The same occurs in the yearly APE results, where 
the close_high_low performs better than all the other 
methods including the methods from TEST 2, and in 
this case even in horizon 1 and 2 where in the 
quarterly results the methods from TEST 2 
performed better. 

Table: 9. 

daily 
ms
e 

        

METHOD     
HORIZO

N 
    

 1 2 3 4 5 10 22 
1-
10 

1-
22 

close 
182

5 
182

8 
183

2 
183

6 
1840 

186
6 

1914 
184

4 
187

1 

close_high 

178
8 

202
0 

179
1 

202
4 

179
4 

202
9 

179
8 

203
5 

1801 
2041 

182
1 

207
3 

1858 
2130 

180
4 

204
5 

182
5 

208
0 

close_high_lo
w 

221
5 

222
0 

222
7 

223
4 

2241 
228

0 
2354 

224
6 

228
9 

close_low 
245

3 
245

9 
246

6 
247

4 
2483 

252
8 

2614 
248

8 
253

8 

ses 
105

8 
197

7 
283

9 
367

3 
4526 
4545 

852
1 

1686
1 

488
2 

940
5 
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106
1 

198
5 

285
1 

368
7 

856
6 

1701
0 

490
4 

946
9 

For the daily MSE results, the close_high method 
performed better than all other methods, however 
the SES method from TEST 2 was stronger one 
horizon ahead but then lost strength and lost strength 
faster than the close_high after horizon 1. Compared 
to the APE daily results, the close_high_low method 
was the stronger model, but this was not the case for 
the MSE daily. 

Table: 10. 
weekly mse        

METHOD     
HORIZO

N 
   

 1 2 3 4 6 12 1-6 1-12 

close 

113
7 

196
8 

114
9 

197
9 

1161 
1986 

1175 
1991 

1200 
2011 

1278 
2052 

1169 
1989 

1206 
2012 

close_high 
227

7 
229

2 
2301 2306 2325 2375 2302 2328 

close_high_lo
w 

181
7 

182
7 

1832 1835 1850 1881 1833 1851 

close_low 
211

9 
213

0 
2139 2147 2172 2223 2144 2174 

naive 

450
3 

453
8 

855
6 

859
9 

1234
3 

1241
9 

1587
1 

1595
9 

22293 
22510 

4213
7 

4285
0 

1377
1 

1387
5   

(SES
) 

2379
9 

2409
4    

(SES
) 

The MSE weekly results compare well with the 
APE weekly results, showing us that volatility is not 
a suitable approach when it comes to the weekly 
frequency. 

4. RESULTS 

4.1. Daily Forecasting Results 

Traditional Methods (TEST 2 Results) 
From the earlier set of tables (referred to here as 

“TEST 2” results), methods such as  
 
Naïve model                                             y_t=  y_t+1                                                                

(13) 
Where: 
y_t Actual observed value at time t + 1 data point. 
Simple Exponential smoothing (SES) 
                                                          y ̂_(├ 

t┤|t+1)=ay_t+(1-a) y ̂_(├ t┤|t-1)                                                         
(14) 

Where:  
y ̂_(├ t┤|t+1) is the forecast for the next period  
a is the smoothing parameter between 0 and 1 
y ̂_(├ t┤|t-1) is the forecasted value at time t made 

at time t-1 
and especially the neural network approach 

(NNET) showed interesting performance patterns. 

For instance, the Naïve model was particularly 
strong in terms of MAE, MAPE, and MASE, whereas 
the neural network excelled at RMSE in the daily 
tests, indicative of nonlinearity and higher variance 
handling capability. 

The daily APE  table revealed that SES took over 
the accuracy testing from the second horizon 
onward, while AUTOARIMA_FOURIER Hyndman 
(2014) 

         y_t=μ+∑_(i=1)^p▒〖ϕ_i y_(t-i) 〗

+∑_(J=1)^q▒〖θ_j ε_(t-j) 〗+∑_(k=1)^k▒( a_k  

cos⁡(2πkϵ/m)+b_k  sin⁡〖(2πkt/m))〗+ε_t     (15) 
Where: 

μ is the Overall Mean Level: The average level or 
intercept of the series. Sets the baseline around which 
the series fluctuates. 

∑_(i=1)^p▒〖ϕ_i y_(t-i) 〗 is the autoregressive 
(AR) term, captures momentum/inertia in the time 
series 

Where: 
p is the order of the AR terms 
ϕ_i is the AR coefficients, Measure the influence 

of past values on the current value. High ϕ_i means 
past values heavily influence y_t 

∑_(J=1)^q▒〖θ_j ε_(t-j) 〗 the moving average 
terms 

Where: 
q is order of the MA term number of past forecast 

included  

θ_j is the MA coefficient which measure the 
influence of past errors on the current value 

ε_(t-j) is the past error terms, thus the difference 
between previous observations and their forecasts, 
hereby adjusting on past mistakes  

∑_(k=1)^k▒( a_k  cos⁡(2πkϵ/m)+b_k  sin⁡〖

(2πkt/m))〗  
Where:  
k is the number of fourier frequencies: Determines 

how many sine and cosine pairs are included, 
a_k  and b_k are the fourier coefficients weights 

for the cosine and sine terms at frequency k, 
m is the seasonal period = Number of 

observations that complete a full seasonal cycle, 
Then: ε_t error term at time t: thus equating for 

random shock or noise at time t, 
performing slightly better at horizon 1. The daily 

MSE (Mean Squared Error) table highlighted that SES 
tended to be strong over multiple horizons. 
However, the naive approach and random walk 
(RWF) occasionally performed competitively, 
sometimes ranking as top methods at certain short 
horizons (e.g., 1-step-ahead or 2-step-ahead). 

 Nymphy (Close-High-Low) vs. TEST 2 
When introducing the “Nymphy” methods that 
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leverage the Close price plus volatility aspects (High 
and Low prices), the results shifted in interesting 
ways. For example, in the daily APE comparison, 
NYMPHY_CLOSE_HIGH_LOW (referred to as 
close_high_low in the tables) demonstrated 
remarkable consistency across horizons. Meanwhile, 
the best method from the original set 
(AUTOARIMA_FOURIER) only outperformed 
close_high_low at the first horizon. Over longer 
horizons, the neural network method with Close, 
High, and Low retained a steady advantage, 
suggesting that capturing volatility helps the model 
generalize better when forecasting daily price 
changes. 

When looking at the daily MSE results for these 
new neural network variants, a slight contrast 
emerges: NYMPHY_CLOSE_HIGH turned out to be 
more accurate than close_high_low under the MSE 
criteria. This discrepancy highlights the importance 
of distinguishing between absolute percentage errors 
(APE) and squared errors (MSE). Methods that do 
well on percentage-based metrics do not necessarily 
top the rankings on squared error measures, and vice 
versa. 

4.2. Weekly Forecasting Results 

Traditional Methods 
For weekly data, the neural network approach 

from the earlier tests (NNET) was a standout, 
winning four out of six error metrics (RMSE, MAE, 
MAPE, and MASE). However, the spline model 
performed poorly, ranking last in four out of six 
metrics. The weekly MSE table also showed that  

Naive (Close-High-Low) vs. TEST 2 
In the weekly APE context, the introduction of 

close_high_low did not meaningfully surpass the 
best methods from TEST 2 for short horizons. Yet, the 
overall performance often skewed in favor of neural 
network approaches that integrate volatility when 
the horizon was extended. The weekly MSE results 
could be very strong at specific short horizons. 
Nonetheless, the table suggests that SES provides 
robust performance over extended horizons, thus 
making it appealing for those prioritizing lower long-
term risk. 

Nymphy  

reinforced the impression that volatility-based 
neural networks may not always dominate every 
horizon but still present a reliable choice once 
horizon lengths increase. 

4.3. Monthly Forecasting Results 

Traditional Methods 

The monthly APE and MSE tables show a 

departure from the daily and weekly scenarios. In the 
original sets (TEST 2 methods), no single model 
dominates all horizons outright. Instead, there is a 
rotation between models like 
AUTOARIMA_FOURIER, Naïve, SES, and 
occasionally NNET. 

Nymphy (Close-High-Low) vs. TEST 2 

Once I incorporate the new neural network 
models, NYMPHY_CLOSE_HIGH and 
NYMPHY_CLOSE_HIGH_LOW frequently emerge 
as top contenders across multiple horizons. The 
monthly MSE results confirm that these close-price-
plus-volatility approaches beat out older methods by 
a notable margin, underscoring the advantage of 
including both High and Low-price parameters. This 
advantage suggests that monthly data, with 
moderate frequencies of volatility, benefits from 
capturing both the amplitude and range of price 
movements. 

4.4. Quarterly Forecasting Results 

Traditional Methods 
At the quarterly level, some classical methods 

such as THETAF or Naïve demonstrate particular 
strengths at certain horizons, especially shorter ones. 
However, the performance is more mixed as horizon 
lengthens. The BATS or TBATS models can show 
large error values if they fail to capture complex 
seasonality’s or produce overfitting problems (as 
indicated by exceptionally high MSE for certain 
horizons). 
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Nymphy (Close-High-Low) vs. TEST 2. 

A pronounced pattern emerges in the quarterly 
results: NYMPHY_CLOSE_HIGH_LOW continues 
to dominate many horizons under both APE and 
MSE. It appears that, as the time horizon gets longer, 
capturing the full range of price movement (Close, 
High, Low) yields more stable and accurate forecasts. 
The synergy among these price dimensions helps the 
neural network anticipate the price direction and 
magnitude more effectively than single-variable or 
simpler multi-variable methods. 

4.5. Yearly Forecasting Results 

 Traditional Methods 

For yearly data, the prior tests showed that 
THETAF Assimakopoulos et al (2000) frequently 
outperforms many classical methods, particularly for 
the first year or two. Meanwhile, double seasonal 
Holt-Winters (DSHW) can excel one year ahead but 
then loses strength for further horizons. SES_MEAN 
occasionally emerges as a surprise winner at longer 
horizons (years three and four). Hence, the best 
yearly approach can vary dramatically, depending 
on whether the user focuses on a 1-year or multi-year 
forecast horizon. 

Nymphy (Close-High-Low) vs. TEST 2. 

When factoring in the new neural network 
methods that use High and Low, 
NYMPHY_CLOSE_HIGH_LOW becomes 
particularly robust as horizons extend to multiple 
years. This is evidenced by lower APE and MSE 
values in the tables, suggesting that capturing 
volatility is a key advantage when predicting over 
longer horizons. Interestingly, while THETAF can be 
strong in short yearly horizons, the neural network 
that integrates the Close, High, and Low data tends 
to maintain more consistent accuracy beyond the first 
forecast year. 

4.6. Method Performance 

At higher frequencies (daily, weekly), the 
outcome depends on the error metric. For instance, 
close_high_low dominated daily APE, but 
close_high led in daily MSE. 

At lower frequencies (monthly, quarterly, yearly), 
close_high_low more consistently led on both APE 
and MSE, indicating that incorporating volatility 
becomes increasingly valuable for longer-term 
forecasts. 

Importance of volatility 

Methods that integrate exogenous parameters 
particularly High and Low prices often outperform 
those relying on the Close price alone. This suggests 
that volatility dynamics carry predictive power, 
allowing the neural networks to gather additional 
patterns and thereby reduce error. 

Performance of classical methods 
Naive and RWF methods can be surprisingly 

competitive in short horizons, as they essentially 
capture very recent trends. 

SES, Holt-Winters, and THETAF remain 
reputable contenders, demonstrating that classical 
methods are not necessarily inferior but can excel 
under particular data characteristics. 

5. STRATEGIC TRADING, FORECASTING, 
EVALUATION AND CONCLUDING 
REMARKS  

Strategic trading follows the most accurate 
trading tool. The trading tool in this essence, I mean 
the most accurate percentage of error thus the least 
error computed. This will be incorporated into future 
work on how to merge the forecasting that was tested 
in this paper and strategic trading. 

From the APE testing, the following is apparent: 
Autoarima, simple exponential smoothing (SES) 

and THETAF performed better than other 
algorithms. However, frequency does have a 
significant effect on which models work better and 
where. Similarly, the horizon also has a noteworthy 
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effect on the models tested, where Autoarima in most 
cases beat all other models on the first horizon. 

The models are competitive. There are somewhat 
diverse results as I move along the horizon. SES 
shows complete dominance from the daily APE table 
where from horizon 2 onwards it performs best in 
terms of accurate testing. However, Autoarima 
shows overall dominance. 

Despite Autoarima’ s overall dominance there are 
horizons where it showed weakness, especially the 
third horizon and, in some instances, on the second. 
It also showed greater strength on medium 
frequencies and progressively lost strength as the 
frequencies became greater with less and less 
training data. Autoarima lost out to other models, 
which is observable from the yearly accuracy test 
where it did not win on a single horizon. In the yearly 
results, other models emerged, for instance THETAF 
_YEARLY and NNET_THETAF_YEARLY 
performed significantly better than Autoarima. 

While Autoarima showed great dominance 
overall, SES showed great dominance on the daily 
accuracy exclusively, in this test, the latter won on all 
of the horizons except the first. Similar dominance 
was only shown by Autoarima in the quarterly and 
monthly APE results. Thus, I can say with great 
confidence that the best trading model for daily 
testing is SES and for monthly and quarterly testing 
is Autoarima. From these observations I can easily 
say that, with more training data, SES is the best 
method, however with medium training data 
Autoarima is a better option.  

Despite constraints in place preventing the 
collection of larger amounts of data, our test shows 
that THETAF and NNET_THETAF are the most 

suitable approaches.  
To conclude, for each frequency there is a specific 

model that prevails. I now take our test to the next 
level; in the next chapter I introduce neural networks 
with volatility variables with the introduction of high 
frequency trading. The aim here is to determine the 
perfect model, and to test if more complexity is better 
than less in models. It has been suggested that the 
simplest models prevail and produce greater 
accuracy than more complicated models. 

The addition of High and Low prices to neural 
network forecasting models generates improved 
accuracy levels for different time intervals. When 
applied over medium- to long-term periods the 
NYMPHY_CLOSE_HIGH_LOW approach delivers 
notable effectiveness as no strategy achieves 
complete optimality. SES together with Naïve along 
with classical models demonstrate effective 
performance when predicting short-term results. 

Performance drops as forecast timeframes 
elongates but Naïve and SES maintain short-run 
accuracy along with THETAF and AUTOARIMA 
demonstrating superiority in the long term despite a 
decrease in reliability. Neural networks achieve 
robust forecast performance when used with external 
regressors to monitor market behavior patterns. 

Results show that the CLOSE_HIGH_LOW 
method delivery sustained superior performance 
compared to alternative methods but showed limited 
exceptions where additional horizon testing would 
enhance selection refinement. The development of 
real-world trading applications must remain a 
priority since CLOSE_HIGH_LOW demonstrates the 
optimal combination of predictive accuracy and 
operational adaptability and consistency. 
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