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ABSTRACT 

The study highlights the critical challenge of assessing and maintaining financial stability, given its 
importance for economic growth and also in the face of financial crises. However, it remains vulnerable to 
internal and external shocks. Traditional methods for assessing financial stability, such as the IMF's Financial 
Stability Index (FSI) often rely on fixed–weight models that may not adapt well to changing economic 
conditions. This gap motivates the exploration of Artificial Intelligence applications to enhance the accuracy 
and predictive power of the FSI. It aims to design an AI-based financial stability index that accurately 
measures the resilience of the banking sector to crises. The study proposes new algorithm that integrate deep 
learning models (DLM) outputs to create a fitness function in a proposed genetic algorithm framework. The 
study used a multi-method AI approach, using machine learning (ML), DLM, and genetic algorithms (GA), to 
diagnose and correct the FSI Path. GA aims to optimize the component variables of the FSI across various 
scenarios. The results concluded that AI techniques outperform traditional methods in predicting FSI trends. 
Also, GA provided scenario-based optimizations, highlighting the FSI's sensitivity to external shocks. The 
study's contribution lies in its innovative integration of AI into financial stability analysis, providing 
policymakers with a dynamic tool for crisis response. The study recommends adopting an AI-enhanced 
financial stability index for early warning systems for shocks and designing macroprudential policies aligned 
with economic cycles. It also provides a comprehensive framework for developing countries to mitigate 
financial instability in the face of overlapping crises. 

KEYWORDS: Artificial Intelligence Applications – Machine Learning Models – Deep Learning Models – 
Genetic Algorithm – Financial Stability Index. 
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1. INTRODUCTION 

Managing the domestic financial system is a major 
challenge for policymakers in developing countries. 
Macroeconomic performance in such economies 
critically depends on the state of the financial system, 
which strongly affects long–term economic 
performance and short–term macroeconomic 
stability. Financial sector distortions pose serious 
obstacles to long-term growth by harming capital 
accumulation and total factor productivity growth 
(Ahir et al., 2023). Financial sector weaknesses may 
themselves be a source of macroeconomic instability 
or cause the spread and amplification of 
macroeconomic shocks emanating from other 
directions. Accordingly, addressing the fragility of 
the financial system, reducing transaction costs that 
represent an additional burden on foreign 
investments, strengthening financial soundness 
indicators, and enhancing fiscal discipline are all 
important steps to address the problem (Phan et al., 
2021).  

 It contributes positively to achieving a state of 
monetary and financial stability, particularly 
economic stability in general, which leads to 
increased savings rates and the spread of positive 
sentiment that supports foreign investors’ confidence 
in these markets (Romer & Romer, 2017). The focus 
on financial stability stems from both academic and 
political perspectives. This topic has been the subject 
of academic discussion since the crisis (Creel et al., 
2015). The main reason for addressing the issue of 
financial stability is its nature as a public good: it is a 
nonrival good because its use does not prevent 
someone else from using it, and it is a non–excludable 
good because no one can be deprived of its use 
(Bassett & Rappoport, 2022).  

 Perhaps the observer of sustainability in its two 
aspects, external and financial–the two primary 
aspects of economic sustainability–will find that they 
are goals that economic authorities deal with apart 
from general economic goals through sustainable 
economic policies, due to their impact on the design, 
implementation, and effectiveness of macroeconomic 
policies in different time frames (Zelka, 2022 ;Illing & 
Liu, 2006). The stability of the financial sector–the 
thermometer that measures the strength of an 
economy and its ability to absorb various economic 
shocks–is considered the nominal stabilizer and the 
ultimate goal of macroprudential policies in the 
economy, in addition to being the main indicator of 
the financial stress test results. 

 The phenomenon of financial soundness has 
received considerable attention from both 
researchers and policymakers due to its significant 

theoretical and empirical implications. This issue is 
of major importance because it influences the design, 
implementation, and effectiveness of macroeconomic 
policies across different timeframes, as well as their 
capacity to absorb economic shocks. (Karanovic & 
Karanovic, 2015) constructed an aggregate Financial 
Stability Index (FSI) for nine Balkan countries from 
1995 to 2011, integrating financial soundness, 
vulnerability, development, and global economic 
climate indicators to assess regional stability. Using 
normalized and weighted data–such as credit/GDP 
ratios, inflation rates, and non– performing loans–the 
index reveals persistently low financial stability 
(values below 0.5), with significant declines during 
the 2001 and 2007 crises. 

 EU–member Balkan countries demonstrated 
stronger stability post–2006, benefiting from robust 
macroprudential frameworks, while non–EU nations 
experienced delayed shocks due to weaker 
integration. A Chanut–Laroque volatility analysis 
identified financial development and global 
economic conditions as key drivers of instability. The 
findings underscore the importance of regional 
policy coordination and enhanced data systems to 
mitigate risks, particularly for non–EU Balkan 
economies exposed to external vulnerabilities. 

 (Denis Negotei Ioana-Alina, 2018) constructed a 
Composite Financial Stability Index (CFSI) for the 
Euro Area (1998–2012) using 25 indicators across four 
sectors: external, real, financial, and global economic 
climate. The index, normalized and weighted, 
successfully identified periods of financial instability, 
including the 2008 crisis, and revealed a general 
stability improvement post-1990s. A Chanut–
Laroque volatility analysis highlighted the financial 
sector's dominant role in driving instability, while 
global economic indicators amplified turbulence 
during crises. The findings underscore the need for 
enhanced supervisory frameworks and stress the 
index's utility in complementing traditional 
macroprudential analyses for Euro Area 
policymakers. (Modise et al., 2023) examined the 
potential advantages of implementing an Aggregate 
Financial Stability Index (AFSI) as a supplementary 
tool for monitoring Botswana’s financial system.  

 In response to recurring financial disturbances 
since the early 2000s, the study emphasizes the need 
for effective mechanisms to detect systemic stress. 
The AFSI is constructed using sub–indices that 
represent financial development, vulnerability, 
soundness, and external factors, with the ARDL 
model applied to assess the influence of 
macroeconomic variables. The results show that the 
AFSI is a reliable indicator, offering policymakers a 
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clearer understanding of financial stress and 
enabling more informed responses. 

 Over the past few decades, artificial intelligence 
(AI) applications have become a primary tool for 
analyzing economic fluctuations, policy impacts, and 
welfare levels. Unlike traditional macroeconomic 
models with reduced form equations–which merely 
describe the behavior of aggregate variables–AI 
applications more accurately capture the economic 
structure by modeling the motivations and 
constraints of individual actors, their interactions 
within institutional frameworks, and the resulting 
decision–making processes (Damasevicius, 2023). 
They also assess how these decisions influence 
macroeconomic variables. Additionally, AI facilitates 
the seamless integration of external shocks without 
relying on reduced–form residual analysis. Among 
its key advantages is the ability to handle nonlinear 
models, which are common in real–world scenarios, 
as well as complex, nonstationary, noisy, and 
incomplete data. AI can process vast amounts of 
variables and identify relationships that lack fixed 
forms, unlike linear regression models. Most 
importantly, these applications provide highly 
predictive solutions (e.g., Rahmani et al., 2023 ; 
Kumar, 2024 ; Jiao et al., 2025).   

 Based on the foregoing, we do not argue in this 
paper about the effectiveness of AI applications in 

constructing the FSI. Rather, we seek to answer two 
fundamental questions. First, "How, and under what 
circumstances can AI applications contribute to the 
design of the Egyptian FSI?". Second, "To what extent 
can extent does the adoption of these applications 
contribute to enhancing financial discipline 
processes by predicting the directional behavior 
pattern of the Egyptian FSI and correcting its path 
under the umbrella of contemporary economic 
crises?". The question of constructing and forecasting 
an FSI’s path has traditionally been an important test 
of credibility economic models for FSI design.  

 Our new proposed algorithm is based on a central 
hypothesis stating: "FSI that the study aims to design 
can serve as a thermometer to measure the resilience 
and soundness of the Egyptian banking sector. 
Additionally, AI applications can be relied upon to 
adjust and correct the index’s directional path". 
Unlike the IMF’s approach–used by many central 
banks worldwide–this proposed FSI construction 
method differs both in the number of variables 
selected for its core components, and in how their 
relative weights are determined. Previous 
approaches rely on fixed relative weights when 
constructing the index. In contrast, this proposed 
approach argues that such static weighting is 
insufficient to build an index capable of serving as a 
reliable 'thermometer' for financial fragility. 

 

Figure 1: The Current, And Future Analytical Scenario Diagram. 

  Our approach believes in the ability of 
machine learning models (MLM) to determine the 
optimal relative weights for the main sub–indices 
comprising this index. Deep learning models (DLM) 
constitute a core component of this proposed 
approach, given their fundamental role in predicting 
the FSI's behavioral path. As a key pillar in designing 
and implementing macroprudential policies, DLM 
offer high explanatory and predictive power. This 

capability enables economic authorities to identify 
deviation patterns from current policies, thereby 
informing more effective policy adjustments. The 
application of artificial intelligence in this approach 
extends further. The study proposes new algorithm 
that integrate DLM outputs to create a fitness 
function in a proposed genetic algorithm (GA) 
framework. GA aims to optimize the component 
variables of the FSI across various scenarios. This will 
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enable policymakers to formulate policies and 
strategies to make appropriate decisions under the 
circumstances and conditions that the Egyptian 
economy is experiencing. 

2. LITERATURE REVIEW 

  A considerable amount of literature has been 
published on financial stability. Karanovic and 
Karanovic (2015) constructed an aggregate Financial 
Stability Index (FSI) for nine Balkan countries from 
1995 to 2011, integrating financial soundness, 
vulnerability, development, and global economic 
climate indicators to assess regional stability. Using 
normalized and weighted data–such as credit/GDP 
ratios, inflation rates, and non– performing loans–the 
index reveals persistently low financial stability 
(values below 0.5), with significant declines during 
the 2001 and 2007 crises. 

  EU–member Balkan countries demonstrated 
stronger stability post–2006, benefiting from robust 
macroprudential frameworks, while non–EU nations 
experienced delayed shocks due to weaker 
integration. A Chanut–Laroque volatility analysis 
identified financial development and global 
economic conditions as key drivers of instability. The 
findings underscore the importance of regional 
policy coordination and enhanced data systems to 
mitigate risks, particularly for non–EU Balkan 
economies exposed to external vulnerabilities. 

Vîntu and Negotei (2018) constructed a 
Composite Financial Stability Index (CFSI) for the 
Euro Area (1998–2012) using 25 indicators across four 
sectors: external, real, financial, and global economic 
climate. The index, normalized and weighted, 
successfully identified periods of financial instability, 
including the 2008 crisis, and revealed a general 
stability improvement post-1990s. A Chanut–
Laroque volatility analysis highlighted the financial 
sector's dominant role in driving instability, while 
global economic indicators amplified turbulence 
during crises. The findings underscore the need for 
enhanced supervisory frameworks and stress the 
index's utility in complementing traditional 
macroprudential analyses for Euro Area 
policymakers.   Tuduetso, Setlhare, and Sekwati 
(2023) examined the potential advantages of 
implementing an Aggregate Financial Stability Index 
(AFSI) as a supplementary tool for monitoring 
Botswana’s financial system. In response to recurring 
financial disturbances since the early 2000s, the study 
emphasizes the need for effective mechanisms to 
detect systemic stress. The AFSI is constructed using 
sub–indices that represent financial development, 
vulnerability, soundness, and external factors, with 

the ARDL model applied to assess the influence of 
macroeconomic variables. The results show that the 
AFSI is a reliable indicator, offering policymakers a 
clearer understanding of financial stress and 
enabling more informed responses. 

  The origins of genetic algorithms date back 
to Turing’s concept of a "learning machine" that 
mimics evolutionary processes. By the 1960s, 
researchers began actively developing computer 
simulations of biological evolution, with Holland’s 
work playing a pivotal role. These algorithms are 
inspired by natural systems, where gene 
reproduction, crossover, and mutation enhance 
adaptability, allowing complex structures to emerge 
from simpler components. While traditionally rooted 
in Darwinian evolution and Mendelian genetics, the 
approach can also incorporate Lamarckian or 
Baldwinian principles. 

 Booker, Goldberg, and Holland (1989) 
highlighted the probabilistic nature of genetic 
algorithms, setting them apart from earlier 
optimization techniques that relied on deterministic, 
enumerative, or purely computational methods. The 
standard genetic algorithm, as described by Koza 
(1992) and Kim and Han (2000), follows a structured 
process beginning with the initialization of a 
randomly generated population of fixed–length 
character strings. This is followed by an iterative 
cycle of mutation, where individuals may undergo 
minor random changes, and crossover, where pairs 
of individuals exchange segments to produce new 
offspring. The population evolves through these 
operations until the newly formed individuals are 
evaluated for fitness, with only the fittest advancing 
to the next iteration. The algorithm terminates once 
an individual meets the predefined fitness criteria or 
another stopping condition is satisfied (Hassanat et 
al., 2019). 

 Udom and Doguwa (2015) constructed the 
Nigerian Financial System Stability Index (FSSI), 
expanding the Banking Sector Stability Index (BSI) to 
include indicators from the banking, insurance, and 
capital markets sectors, to provide a comprehensive 
measure of financial stability during the global 
financial crisis. The study concluded that the FSSI 
represents an accurate tool for policymakers to 
monitor systemic risks and implement targeted 
interventions through the interconnectedness of 
banks and capital markets. 

 Similarly, Akosah, Loloh, Lawson, and Kumah 
(2018) created an Aggregate Financial Stability Index 
(AFSI) for Ghana to assess the performance of its 
financial system after the adoption of inflation 
targeting in 2017. This index is derived from four 
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sub-indices: the Financial Development Index (FDI), 
the Financial Soundness Index (FSI), the Financial 
Vulnerability Index (FVI), and the World Economic 
Climate Index (WECI). The study concluded that the 
Ghana Financial Stability Index (AFSI) is an effective 
tool for policymakers to measure systemic risks and 
guide monetary policy to achieve and enhance 
financial stability. 

 Bitetto, Cerchiello, and Mertzanis (2023) 
presented a new data-driven approach to measuring 
financial soundness in 119 countries over the period 
2010–2017 using the International Monetary Fund's 
Financial Soundness Indicators (FSIs). An alternative 
data-driven measure of financial soundness (FSIND) 
was constructed, which captures cross-sectional and 
temporal dependencies of data. It demonstrated 
strong predictive power, providing policymakers 
and financial institutions with a reliable tool for 
monitoring financial stability. It also provides a 
scalable and adaptable framework for analyzing 
global financial stability, bridging the gap between 
theory and data-driven policymaking. 

 Goulet Coulombe (2024) provide a clear empirical 
framework for integrating machine learning into 
macroeconomic forecasting, highlighting its most 
influential aspects. It identifies key features of 
machine learning (ML) that improve macroeconomic 
forecasting and goes beyond simply identifying the 
best-performing machine learning algorithms. It 
focuses on understanding how these algorithms 
contribute to forecasting accuracy. The study 
concludes that machine learning enhances 
macroeconomic forecasting primarily through 
nonlinear modeling, which captures complex 
relationships during uncertain economic periods. 
Also, Pallathadka et al. (2023) emphasized the 
application of machine learning (ML) models to 
predict bankruptcies, leveraging financial data to 
enhance forecasting accuracy. It also plays a role in 
identifying early warning signs of financial distress, 
enabling proactive risk management, and protecting 
economic stability. By combining advanced machine 
learning techniques with optimization algorithms, it 
provides an accurate and scalable approach to 
bankruptcy prediction, enabling policymakers to 
integrate these predictive models into regulatory 
frameworks to monitor systemic risks and ensure 
financial stability.  

 Our approach believes in the ability of machine 
learning models (MLM) to determine the optimal 
relative weights for the main sub–indices comprising 
this index. Deep learning models (DLM) constitute a 
core component of this proposed approach, given 
their fundamental role in predicting the FSI's 

behavioral path. As a key pillar in designing and 
implementing macroprudential policies, DLM offer 
high explanatory and predictive power. This 
capability enables economic authorities to identify 
deviation patterns from current policies, thereby 
informing more effective policy adjustments. The 
application of artificial intelligence in this approach 
extends further. The study proposes new algorithm 
that integrate DLM outputs to create a fitness 
function in a proposed genetic algorithm (GA) 
framework. GA aims to optimize the component 
variables of the FSI across various scenarios. This will 
enable policymakers to formulate policies and 
strategies to make appropriate decisions under the 
circumstances and conditions that the Egyptian 
economy is experiencing. 

3. HAVE MLM BECOME THE ARTISTIC 
SCULPTORS OF FSI DESIGN? 

 In 2002, the International Monetary Fund (IMF) 
outlined the essential aspects of achieving economic 
sustainability, dividing them into three categories: 
external sustainability, financial sustainability, and 
financial sector stability. Regarding financial sector 
stability, the IMF defined it as a state in which the 
financial sector can withstand internal and external 
crises while continuing to perform its core functions: 
efficiently allocating financial resources toward 
investment opportunities and maintaining effective 
payment systems–even during crises–without 
disrupting self-correcting mechanisms that mitigate 
financial risks and imbalances. Additionally, it 
emphasized the need to align the financial asset 
values growth rate with the sustainable economic 
growth rate (IMF, 2002).  

 This section discusses the design and analysis of 
FSI in the Egyptian economy. The FSI is a 
quantitative measure of the banking sector's ability to 
efficiently allocate economic resources through 
financial intermediation services while remaining 
vulnerable to external and internal shocks. Such 
vulnerabilities can lead to the accumulation of 
systemic risks, potentially disrupting the financial 
system’s performance or undermining confidence in 
its soundness, with negative effects on the real 
economy. The FSI reflects overall financial stability, 
helping to detect imbalances in the financial sector at 
an early stage. However, it is ineffective in predicting 
periods of financial stress (IMF, 2002 ; GFSR, 2024). 
The concept of designing and constructing this 
index–both quantitatively and practically–was not 
introduced into the Egyptian economy until 2017. 
Since then, the Egyptian FSI has become a key 
measure of the economy’s resilience and its ability to 
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absorb economic shocks. It has also emerged as a 
nominal stabilizer and a central objective of 
macroprudential policies, in addition to serving as 
the primary indicator of financial stress test results 
(Al-Rjoub, 2021). 

  Once the Egyptian economy began 
implementing and constructing this index, monetary 
authorities promptly applied it retrospectively using 
quarterly historical time series data dating back to 
March 2011. The IMF's methodology for constructing 
the index–a composite quantitative measure–relied 
on a broad set of 21 variables grouped into four sub-
indices banking sector performance (BPI), 
macroeconomic performance conditions (MPI), 
financial market development (FMI), and global 
economic climate (GEI). This methodology aligns 
with one of the most widely adopted approaches 
among countries that have developed similar indices. 
The index is calculated as an equally weighted 
average of the selected variables, covering the 
core dimensions of financial stability. Like many 
such indices, it employs empirical 
normalization –a technique also used in this 
study. However, this study modifies the 
methodology by adjusting the number of sub–
indicators within each main category.  

  For instance, the Egyptian banking sector 
performance sub–index includes 8 variables, but it 
overlooks key indicators for monitoring systemic 
risks and macroprudential policy tools, such as: loan 
to asset ratio limits, debt to income ratio limits, and 
currency mismatch.  

  To address this gap, this study expands the 
sub–index to include 11 variables, ensuring a more 
comprehensive assessment of financial stability. 
Regarding the macroeconomic conditions index, five 
variables were added to the existing seven core 
variables: real exchange rate fluctuations, net 
international reserves growth rate, degree of 
economic openness, savings–investment gap, and 
credit gap For the global economic climate 

index, the global international reserves volume 
variable was included alongside the two original 
variables. With these additions, the total number of 
variables in the index designed for this study reaches 
30. This study employs a methodology distinct from 
that of the Central Bank of Egypt (CBE), which uses 
a weighted average approach for index construction. 
Aligning with the IMF's framework in the financial 
stability report 2022, we adopt variable weights 
based on each indicator's explanatory power 
regarding FSI behavior (CBE, 2022). However, our 
methodological innovation extends further by 
proposing a novel approach that fundamentally 
differs from existing weighting estimation methods. 
Specifically, we introduce MLM to determine these 
relative weights. Consequently, the index 
construction follows the functional form presented 
below: 

𝐹𝑆𝐼𝑡 = ∑ 𝜔𝑗𝐵𝑃𝐼𝑑𝑗𝑡

11

𝑛=1

+ ∑ 𝜔𝑗𝑀𝑃𝐼𝑑𝑗𝑡

12

𝑛=1

+ ∑ 𝜔𝑗𝐹𝑀𝐼𝑑𝑗𝑡

4

𝑛=1

+ ∑ 𝜔𝑗𝐺𝐸𝐼𝑑𝑗𝑡;

3

𝑛=1

                           (1) 

Where ω_jBPI is the banking sector performance 
index weighting factor, ω_jMPI is the 
macroeconomic conditions index weighting factor, 
ω_jFMI is the financial market development index 
weighting factor, and ω_jGEI is the global economic 
climate index weighting factor. For converting the 
baseline variables x_jt to standardized values d_jt, 
normalization was applied using the following 
functional form: 

 

𝑑𝑗𝑡 =
𝑥𝑗𝑡       − 𝑥𝑗 𝑚𝑖𝑛

𝑥𝑗 𝑚𝑎𝑥 − 𝑥𝑗 𝑚𝑖𝑛
  ;                                                                                                            (2) 

While each individual variable may not fully 
capture financial stability, the aggregated variables 
can indicate potential risks. This distinction also 
applies to the scope of implementation, as this study 
utilizes quarterly time series data covering the period 
from 2005Q1 to 2022Q4 to design this quarterly 
index. According to this methodology, an increase in 
the value of each variable reflects an improvement in 
financial stability. Therefore, the inverse value is 
used for variables that negatively impact financial 

stability. Furthermore, the index scales from 0 to 1, 
with proximity to 1 denoting robust financial 
stability, while a value near zero signifies fragility. 

  We consider several MLM in our horse race. 
These models employ supervised artificial 
intelligence techniques that utilize backpropagation 
algorithms and iterative optimization to identify 
patterns and relationships among variables. Through 
training on extensive datasets, the models develop 
enhanced analytical capabilities for processing 



597 DIAGNOSING THE PATH OF FINANCIAL STABILITY INDEX 
 

SCIENTIFIC CULTURE, Vol. 12, No 2.1, (2026), pp. 591-611 

complex relationships. This study implements a 
contemporary AI framework that facilitates: real–
time interaction between training, testing, and 
validation phases; continuous error correction; and 
comparative evaluation of machine learning 
algorithms to select the optimal approach for data 
pattern recognition. The results of the proposed 
scheme in Figure 2 demonstrated that five machine 

learning models emerged as leading candidates for 
predicting the directional path of FSI: stochastic 
gradient descent (SGD), K–means, support vector 
machines (SVM), lasso regression, and elastic net 
regression. Among these, the SGD model 
distinguished itself as the most effective in 
explaining the index's behavioral patterns, 
surpassing other models in predictive performance. 

 
SGD model achieved exceptional results across all 

evaluation metrics, most notably attaining a 
coefficient of determination of 95.6%. Both its mean 
squared error and root mean squared error reached 
negligible values approaching zero, while its mean 

absolute error similarly converged near zero. These 
outstanding outcomes, as quantified in the machine 
learning model comparison matrix presented below, 
confirm the SGD model's superior capability in 
forecasting financial stability trends.  

Table 1: A Comprehensive Evaluation Framework for Assessing MLM. 
MLM MSE RMSE MAE R2 % 

SGD 0.001 0.008 0.006 95.6 

Elastic Net Regression 0.003 0.008 0.007 94.2 

Lasso Regression 0.003 0.013 0.011 92.3 

KMN 0.005 0.020 0.028 76.6 

SVM 0.009 0.045 0.039 69.1 

 
Notes. The Model Rankings Presented Here Derive From Analysis Of 76 Observational Data Points, Sorted In Descending Order By 

Their Respective Coefficients Of Determination (R²). 

Figure 3 demonstrates the predictive accuracy of 
the SGD model, evidenced by the minimal deviations 
observed between actual and estimated values of the 
Egyptian FSI throughout the study period. The figure 
further reveals a strong correspondence between real 
and predicted outputs, as reflected in the distribution 
of model outputs around the corresponding trend 
lines. This robust agreement validates the reliability 

of the machine learning models' results. 
Given the demonstrated superiority of SGD 

model, as evidenced by its capacity to dynamically 
adjust parameter weights and minimize mean error 
convergence toward zero. it becomes 
methodologically imperative to examine whether the 
time series residuals |X_t |  follow a normal 
distribution during the study period. This diagnostic 
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testing is essential for properly evaluating the statistical hypotheses outlined below. 

𝐻0: |𝑋𝑡|  ≈  𝒩(𝜇, 𝜎2)  ;                  𝑓(𝑥) =
1

𝜎√2𝜋
 ℯ−

1
2
 ( 

𝑥−𝜇
𝜎

)
2

;   𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦                        (3) 

𝐻1: |𝑋𝑡|  ≉  𝒩(𝜇, 𝜎2)  ;                  𝑓(𝑥) ≠
1

𝜎√2𝜋
 ℯ−

1
2
 ( 

𝑥−𝜇
𝜎

)
2

;   𝑁𝑜𝑛 − 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦          (4) 

 
Figure 4 indicates a p–value of 0.327, which 

exceeds the conventional 0.05 significance threshold. 
This result fails to reject the null hypothesis, 
supporting that the residuals of SGD model follow a 

normal distribution. Consequently, we can conclude 
that the SGD model produce prediction errors that 
are effectively zero–centered. 

Among competing machine learning approaches, 
the relative weights presented in Figure 5 were 
applied to weight the aforementioned indicators for 
estimating the composite index. 

The index estimation results revealed a direct 
complementary relationship between the composite 

index and its constituent components, as 
demonstrated by the directional correlation matrix 
in panel A of Figure 6. Furthermore, the analysis 
shows significant directional convergence between 
the study index FSIS and the Central Bank of Egypt's 
index FSICB, with periods approaching near–perfect 
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alignment, as evidenced in panel B of Figure 6. 

 
The study period's index design reflected 

contradictory scenarios that manifested through 
volatile index movements. In 2005, Egyptian 
monetary authorities introduced significant reforms, 
including implementing a corridor system for 
overnight interbank rate management and 
establishing a dedicated banking sector restructuring 
department. This was complemented by a 
comprehensive four-part strategy to strengthen 
banking system stability, encompassing mergers, 
privatizations, non–performing loan resolution, and 
public sector bank restructuring. Concurrently, a 
cooperation agreement was signed with the 
European Central Bank and four European national 
banks to modernize regulatory and supervisory 
frameworks according to international standards. 
These efforts peaked with the creation of the Macro 
Surveillance Unit, tasked with ongoing monitoring of 
systemic risks through prudential indicator analysis.  

  The reforms yielded measurable 
improvements by 2006, including reduced currency 
mismatches and loan to asset ratios alongside 
strengthened capital adequacy and reserve 
requirements, driving the Egyptian FSI to 0.59 points. 
However, the 2008 global financial crisis disrupted 
this progress, causing the index to fall to 0.54 points–
its third–lowest level during the study period. 

Importantly, this decline should not be interpreted as 
macroprudential policy failure, but rather 
underscores the necessity for coordinated 
advancement across all index components to achieve 
sustainable financial stability. 

  The index assessment results showed 
significant declines across key indicators between 
2006 and 2008: the global economic climate index 
dropped from 0.93 to 0.83, the macroeconomic 
conditions index fell from 0.86 to 0.73, and the 
financial markets development index decreased from 
0.49 to 0.43. In response to these challenges, the 
Central Bank of Egypt proactively intensified its 
supervisory framework by implementing additional 
protective measures to stabilize the financial 
environment. This included establishing a seventh 
specialized unit to enhance comprehensive 
oversight, building on recent successes in partial 
banking sector supervision. The new unit focuses 
specifically on systemic risk mitigation through 
continuous monitoring of financial soundness 
indicators and application of macroprudential tools. 
Its mandate includes developing early warning 
capabilities by analyzing structural trends and 
addressing financial vulnerabilities arising from 
accumulating macroeconomic risks. Since that 
period, Egyptian authorities have implemented 
systematic monitoring of banking sector indicators 
encompassing asset quality, liquidity, and 
profitability, complemented by comprehensive stress 
testing to assess the financial system's resilience 
against stochastic shocks. As Egypt's economy 
approached completion of its banking sector 
modernization and economic reform agenda, the 
nation confronted escalating multidimensional crises 
spanning security, political, economic, and social 
spheres from January 2011 through mid-2013 and 
thereafter. 

  The post–revolutionary political turbulence 
following January 2011 precipitated severe economic 
disruptions, manifesting principally through 
deteriorating security conditions that undermined 
tourism, trade, transportation, and investment flows, 
coupled with declining employment and 
productivity metrics. These cumulative shocks 
precipitated a dramatic collapse in macroeconomic 
conditions, with the corresponding index plunging 
to its study–period nadir of 0.17 by the end of 2011, 
while the Egyptian FSI simultaneously registered its 
second–lowest observed value of 0.51. This 
asymmetric response–wherein macroeconomic 
indicators suffered disproportionately relative to 
other index components–provides compelling 
evidence for the constrained effectiveness of 
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macroprudential policy instruments during periods 
of acute political–economic instability, while 
simultaneously revealing structural vulnerabilities in 
Egypt's economic architecture. 

  By 2016, a fundamental policy misalignment 
had become apparent between Egypt's 
macroeconomic framework and its exchange rate 
management practices. This divergence fostered 
significant economic instability, manifested through 
increased volatility in real exchange rates across 
successive regimes, diminished monetary policy 
transmission, and widening fiscal deficits. The 
resulting environment elevated transaction costs 
while eroding industrial competitiveness, ultimately 
depleting net international reserves, suppressing 
growth and employment indicators, and accelerating 
inflationary pressures alongside unsustainable 
public debt accumulation. In response to these 
structural imbalances, the IMF Executive Board 
approved the extended fund facility arrangement in 
November 2016, committing SDR 8.59 billion 
(approximately USD 12 billion) to support Egypt's 
economic reform agenda.  

  The subsequent stabilization program 
achieved several critical milestones: Egypt recorded 
its first primary budget surplus in sixteen years (1% 
of GDP or EGP 4.66 billion), reduced inflation from 
its 2017 peak of 29.76% following exchange rate 
liberalization to 9.37% by 2019, and restored 
economic growth to 5.6% after its 2015 trough of 
2.4%. 

  These outcomes demonstrated markedly 
improved policy effectiveness, reflected in the FSI's 
recovery to 0.60 by the end of 2019. This stabilization 
was underpinned by substantial financial sector 
reforms including reserve requirement ratios 
exceeding 14%, net stable funding ratios approaching 
195% across currency denominations, and systemic 
risk buffers reaching 13%.  

  Even the most optimistic economists failed to 
anticipate the global economic arena would confront 
a health crisis of COVID–19's magnitude–a pandemic 
that within days escalated into a full–scale economic 
catastrophe. This unprecedented event dismantled 
conventional economic theories regarding crisis 
transmission mechanisms and temporal patterns, 
while paralyzing analysts' capacity to distinguish 
between supply and demand shocks. The crisis so 
profoundly mirrored the 1930s great depression that 
it became universally termed the great lockdown 
crisis. For Egypt, this global shock necessitated 
extraordinary policy measures to simultaneously 
mitigate damage and preserve hard–won gains from 
the nation's financial and banking sector reforms. 

Egyptian monetary authorities mounted a 
multipronged response, first identifying virus-
affected sectors for targeted support through 
working capital financing–particularly payroll 
protection–and implementing six—month debt 
moratoriums for businesses and individuals. The 
tourism sector received dedicated assistance via an 
EGP 3 billion package featuring 5% declining–
interest loans for wage payments and essential 
operational costs.  

  Regulatory flexibility measures included 
one–year exemptions from increased capital 
requirements for banks' largest exposures and special 
debt resolution frameworks for delinquent 
borrowers through March 2021, incorporating 
transaction ban lifts and collateral releases. 
Concurrent infrastructure expansions added 6,500 
ATMs, bringing national coverage to approximately 
20,000 machines while advancing financial inclusion 
objectives. 

  These policy interventions significantly 
bolstered the resilience of the Egyptian economy 
against COVID—19 shocks. The banking sector's 
robust liquidity position, enhanced profitability, and 
stable funding base further reduced systemic 
vulnerabilities, enabling the Egyptian FSI to rise 
modestly from 0.53 in 2020 to 0.54 in 2021. The 
decline in the FSI during the pandemic is largely 
attributed to the drop in the financial market’s 
development index to 0.60 by the end of 2020, losing 
more than 30% of its value compared to the previous 
year. This was due to the turmoil in emerging 
financial markets, including Egypt, and the outflow 
of foreign capital, which led to a rise in both credit 
default swap prices and the Egyptian stock 
exchange’s return volatility index, in addition to a 
noticeable decline in the market capitalization ratio 
(CBE, 2022).  

  Meanwhile, the drop in the global economic 
climate index to 0.83 during the same period ranked 
as the second most significant explanatory sub–
indicator for the decline in Egypt’s FSI. 
Consequently, the slight decreases in the banking 
sector performance and macroeconomic conditions 
indices cannot be relied upon. This analysis 
demonstrates the success of the Egyptian financial 
system in containing the repercussions of the 
COVID–19 pandemic without disrupting its primary 
role in financial intermediation. At the same time, the 
Egyptian economy continued to achieve positive 
growth rates, benefiting from its resilience and 
diversity, as well as the necessary precautionary 
measures and proactive, effective economic policies 
supported by the gains of the economic reform 
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program.  
  This contributed to the continued stability of 

economic and financial indicators and mitigated the 
severity of the pandemic's economic and social 
impacts on various sectors. As a result, the country’s 
credit rating remained stable, foreign investors–
maintained confidence in the Egyptian economy’s 
performance, and a positive, optimistic outlook was 
fostered regarding its future performance in the 
coming years. However, Egypt’s FSI was destined to 
be battered by successive and overlapping crises. The 
glimmer of hope did not last long–just as early signs 
of recovery emerged after nearly two years of the 
pandemic, unfavorable winds blew once again.  

  Global geopolitical risks escalated due to the 
Russian–Ukrainian war, accompanied by heightened 
uncertainty and risks following a sharp rise in global 
inflation rates under the pressure of increasing prices 
of essential goods, food, and energy, alongside an 
increase in capital outflows. Additionally, the 
persistent bottlenecks and disruptions in many value 
chains further disrupted global trade and worsened 
the terms of international exchange rates. The 
Egyptian economy was not spared from these 
successive economic disruptions and crises, and the 
FSI declined once again, recording 0.50 by the end of 
the fourth quarter of 2022. 

  From the previous presentation, we saw how 
machine learning models act as the artistic sculptors 
of the FSI and how this proposal contributes to 
providing an integrated analytical perspective on 
financial economics. 

4. DLM FOR DIAGNOSING THE PATH OF 
FSI: IS IT A PANACEA? 

  In this section, the study aims to predict the 
behavioral path of the Egyptian FSI through three 
main stages. The first stage involves identifying the 
determinants of the FSI by estimating the long and 
short–term elasticities of the explanatory variables 
that influence the index's behavior. The second stage 
estimates the optimal FSI balance by weighting these 
elasticities–derived in the first stage—against the 
potential medium–term values of the relevant 
economic variables. Finally, the third stage assesses 
the effectiveness of macroprudential policies in the 
Egyptian economy by comparing the actual FSI 
values with the benchmark values obtained from the 
previous two stages. DLM, with their superior 
interpretative and predictive capabilities, can merge 
the first and second stages into a single process 
dedicated to estimating the optimal FSI. This 
interpretative power of neural networks–a 
prominent deep learning model–originates from 

Hebbian learning, which provides the theoretical 
basis for repetitive neuronal activation. By 
strengthening synaptic efficacy between input and 
output layers and dynamically adjusting their 
correlational weights, this mechanism refines both 
long and short–term explanatory weights to achieve 
optimal results (e.g., Mohamed, 2022 ; Li & Law, 2024 
; Casolaro et al., 2023) 

  On the other hand, the high predictive power 
of neural network models stems from their two–stage 
prediction process. The first stage predicts short–
term future values of phenomena based on their past 
historical behavior, while the second stage predicts 
long–term behavior by combining historical data 
with short–term future estimates. Inspired by the 
biological neural network model, artificial neural 
networks consist of interconnected neurons 
organized into layers that exchange information. 
These networks receive input signals through the 
input layer, where each neuron represents an 
independent variable. Each variable influences the 
network’s outputs with distinct weights, reflecting its 
relative importance in explaining the output 
behavior. The input layer connects to one or more 
hidden layers (also called intermediate or middle 
layers) via communication channels. In biological 
terms, the hidden layer’s structure corresponds to the 
axon, while its functional mechanism resembles the 
nucleus (Cárdenas et al., 2025). The communication 
channels between layers mirror the role of 
neurotransmitters in biological systems. Finally, the 
hidden layer connects to the output layer, which 
contains one or more neurons depending on the 
model’s design and the interpretation required. 
Before discussing activation functions in neural 
network models, it is useful to first examine the 
general functional form of these models. 
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 The previous model illustrates how the 
hidden layers [H1,….,HN] receive information and 

signals from the input layer [X0,X1,.....,XK], where 〖

[α〗_01,α_02,.....,α_0N] represent the bias term, 
while the weights α_0N,β_KN   represent the 
transmission channels between the K inputs and N 
outputs. The following model further demonstrates 
how the processed outputs from the hidden layers 
are transferred to the output layer [Y1,Y2,.....,YK]. 
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In biological neurons, cellular outputs are 

determined by both the intensity of incoming 
impulses and the cell's internal activation and 
learning functions. This biological process parallels 
the operation of artificial neural networks, where 
outputs primarily depend on activation functions 
that process input and hidden layer variables to 
generate optimal network estimations. While various 
activation functions exist for training neural 
networks, nonlinear activation functions (NAFs) are 
particularly crucial. NAFs enable neural networks to 
realize their full potential by optimizing weight 
adjustments and producing the most accurate 
estimations, even with complex datasets. 

The following model presents the logistic 
cumulative distribution function, the most widely 
used activation function in neural networks. The 
sigmoid function, a key type of nonlinear logistic 
activation function, is primarily employed to activate 
variables in either the input layer or hidden layer 
units. This continuous function serves two important 
purposes: training multilayer networks via 
backpropagation operations, and providing 
differentiable transformation through its hyperbolic 
form. Mathematically, the sigmoid function operates 
on the interval [-1,1] and can be expressed in the 
following functional form: 

F(x)=(e^x-e^(-x))/(e^x+e^(-x) )   ;                                                                                                           
(7). 

 The sigmoid function can be expressed as a 
binary function that is continuous and differentiable 
over the interval [0,1]. When the function's output 
approaches 1, this indicates that the neuron has 

reached its maximum activation level in response to 
incoming signals. Conversely, when the output 
approaches 0, it signifies no neuronal response to the 
input stimuli. The binary sigmoid function can be 
mathematically represented by Equation 5 as 
follows: 
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  ;                                                                 (8) 

By substituting Equation 8 into Equation 6, the fundamental function for feedforward neural network 
models can be derived as follows: 
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DLM offer significant advantages for economic 
analysis, particularly their capacity to model 
nonlinear relationships that characterize real–world 
systems. These models excel at processing complex 
datasets featuring nonstationary, noisy, or 
incomplete observations while accommodating 
numerous variables. Unlike restrictive parametric 
approaches like linear regression, DLM can capture 
intricate, form–free relationships between variables 
while maintaining strong predictive performance. In 
modeling Egypt's financial stability, we construct the 
network using quarterly data spanning 2005Q1 
through 2022Q4. The output layer consists solely of 

the Financial Stability Index 〖FSI〗_t as the target 
endogenous variable. The input layer incorporates 
four fundamental explanatory variables: banking 

sector performance〖BPI〗_t, macroeconomic 

performance conditions 〖MPI〗_t, financial market 

development 〖FMI〗_t, and the global economic 

climate 〖GEI〗_t.  
  Theory suggests positive associations 

between 〖FSI〗_t and these core indicators–
movement toward each variable's maximum value 
should correspond with improved financial stability. 
To account for recent structural shocks, we augment 

the input layer with a dummy variable 〖PRI〗_t 
capturing combined crisis impacts from the COVID–
19 pandemic and Russia–Ukraine war. This 
specification anticipates an inverse relationship with 
financial stability, consistent with observed negative 
economic consequences. The model's architecture 
thus balances fundamental economic drivers with 
extraordinary external shocks that have 
disproportionately affected Egypt's economy. This 
initial conceptual framework is visually represented 
in Figure 7, which comprises two components 
illustrating both the correlation strength and initial 
weights of direct effects. 

 
 The study develops its proposed algorithm 

for training and estimating neural network models 
through feedforward and backpropagation 
approaches. Backpropagation serves as a systematic 
training method for multi–layer feedforward 
networks, employing mathematical logic and 
sequential rules to calculate derivatives in the error 
equation for the hidden and output layer weights. 
This process identifies discrepancies between 
expected and actual network outputs, then 
automatically adjusts internal weights to minimize 

errors through iterative cycles until achieving the 
minimal possible mean squared error–the optimal 
solution. A critical design consideration involves 
determining the appropriate number of hidden layer 
neurons, which mediates the network's interaction 
with external data while accounting for transmission 
channels and both direct/indirect effects between 
layers. Insufficient neurons may prevent signal 
detection in complex data, while excessive neurons 
unnecessarily prolong training. This study 
implements a trial–and–error approach with forward 
testing, beginning with minimal hidden neurons 
(initially two) and iteratively training until achieving 



604 AHMED R. MOHAMED et el 
 

SCIENTIFIC CULTURE, Vol. 12, No 2.1, (2026), pp. 591-611 

the target 1% mean squared error threshold. Through 
this optimization process, the study identifies an 
optimal architecture of five input neurons, ten 
hidden neurons, and one output neuron for 
predicting the Egyptian FSI's directional behavior via 
structural financial stability analysis. 

  The implemented Augmented Feed–forward 
Back Propagation Neural Network model 
incorporates both direct effects (measured through 
short–term weights ξ between input and output 
layers) and indirect effects (captured through long–
term weights across the input–hidden–output 
pathway). This dual–weight architecture enables 
comprehensive measurement of the FSI 's underlying 
dynamics. 

FSI_t=γ_0+ω_1/(1+e^(-(α_01+β_11 〖

BPI〗_t+β_21 〖MPI〗_t+β_31 〖FMI〗

_t+β_41 〖GEI〗_t+β_51 〖CEC〗_t)) ) 

+ω_2/(1+e^(-(α_02+β_12 〖BPI〗

_t+β_22 〖MPI〗_t+β_32 〖FMI〗_t+β_42 

〖GEI〗_t+β_52 〖CEC〗_t)) )+⋅⋅⋅⋅⋅⋅⋅ 

⋅⋅⋅⋅⋅⋅+ω_10/(1+e^(-(α_10+β_110 〖BPI〗

_t+β_210 〖MPI〗_t+β_310 〖FMI〗

_t+β_410 〖GEI〗_t+β_510 〖CEC〗_t ) ) 

)+[█(ξ_1@ξ_2@ξ_3@ξ_4@ξ_5 )]  [█(〖BPI〗

_t@〖MPI〗_t@〖FMI〗_t@〖GEI〗_t@〖

PRI〗_t )];   (10). 

 

 Figure 8 presents the proposed algorithm for 
training and estimating neural network models, 
demonstrating both the direct transmission of effects 
from the input layer to the output layer and the 
indirect pathway through the intermediate layer. The 
network employs the TRAINLM training function 
coupled with the LEARNGD adaptation learning 
function, which work in tandem to iteratively adjust 
relative weights until achieving desired outputs. The 
training process begins with the assignment of small 
initial weights, followed by systematic comparison 
between network outputs and target outputs to 
calculate errors. Through backpropagation 
operations, these errors propagate backward to 
modify the weighted connections. The learning 
function specifically minimizes discrepancies 
between predicted and actual output layer values. 

During each learning iteration, the network 
processes information sequentially across all layers 
until reaching the output layer, where deviations 
from target outputs are quantified. These error 
values then feedback through the network in reverse 
order, enabling layer–by–layer weight adjustments. 
This cyclical process of forward propagation and 
backward error correction continues until the system 
converges on optimal weights that produce the target 
outputs with minimal residual error  

 The dataset was partitioned following 
conventional neural network practice, with 70% 
allocated for training, 15% for validation, and the 
remaining 15% for testing. For activation, the study 
employed the sigmoid function (denoted as Logsig in 
the training algorithm), selected for its demonstrated 
effectiveness in processing the training algorithm), 
selected for its demonstrated effectiveness in 
processing explanatory variables across both input 
and hidden layers to optimize network estimations. 
As a premier nonlinear logistic activation function, 
the sigmoid function has become the standard choice 
for activating variables within neural network 
architectures. Through the implemented training 
methodology described earlier, the network achieved 
the following key results: 

𝐹𝑆𝐼𝑡 = −0.08 +
−2.01

1 + 𝑒−(−0.5+1.2 𝐵𝑃𝐼𝑡0.1 𝑀𝑃𝐼𝑡+1.9 𝐹𝑀𝐼𝑡+0.1 𝐺𝐸𝐼𝑡+0.5 𝐷𝑢𝑚𝑚𝑦𝑡)
+⋅⋅⋅ 
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(11) 
The neural network training results demonstrate 

a strong, statistically significant positive relationship 
between all index sub–components and the overall 
Egyptian FSI performance during the study period. 
Among these, macroeconomic conditions emerged as 
the most influential determinant, surpassing even 
banking sector performance in its impact on financial 
stability. This finding aligns with economic theory, as 
systemic soundness inherently incorporates the 
stability of constituent financial institutions. The 

results validate our analytical approach of examining 
how macroeconomic trajectories ultimately affect 
financial institutions' resilience and capacity to 
absorb shocks. Conversely, the analysis revealed a 
significant inverse relationship between financial 
stability and contemporary economic crisis shocks. 
The model estimates indicate that a 1% increase in 
crisis–related disturbances correspond to a 
substantial 38.7% decline in the FSI, highlighting the 
severe vulnerability of Egypt's financial system to 
external shocks. 

 The diagnostic testing phase demonstrated 
the efficiency of the proposed neural network 
training algorithm, which rapidly achieved its target 
mean squared error of 1%. As Figure 4 illustrates, the 
error gradient curve converged quickly toward this 
objective, ultimately reaching an insignificantly 

different value from zero by the 101st training 
iteration. This rapid convergence to near–zero 
residuals strongly indicate the model's excellent fit 
across all phases–training, validation, and testing—
confirming its robust predictive capability. 

Figure 10 clearly demonstrates the strong 
correlation between the actual Egyptian FSI–serving 
as the output layer in our neural network model–and 

its optimal estimated values. This high 
correspondence was achieved by weighting long–
term elasticities against potential economic variable 
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values in the input layer. The model achieved an 
exceptional correlation coefficient of 0.997 between 
actual and estimated FSI values across all samples, 
with residuals never exceeding 0.003. These results 
confirm the model's excellent fit, showing that 
approximately 99.7% of output layer variations can 
be explained by the combined influence of the five—
input layer explanatory variables and their ten 
transmission channels through the hidden layer. 

  The analysis begins by evaluating the trend 
behavior of Egypt's FSI, building upon previous 
research that incorporated advanced artificial 
intelligence through DLM. This approach offers 
distinct advantages for both assessing current FSI 
trends and predicting future behavior, surpassing 
conventional machine learning models through its 
capacity to interpret direct/indirect input layer 
effects and handle multiple output variables 
simultaneously. Deep learning's predictive strength 
derives from its two–phase architecture: first 
predicting short–term movements from historical 
patterns, then projecting long–term trends by 
combining historical data with short–term forecasts. 
Our implementation completed the second phase by 
applying standardized weights from the initial phase 
to estimate the optimal FSI values. Comparing these 
estimates with actual data revealed critical 
deviations–positive values indicating effective 
macroprudential policies (actual FSI exceeding 
benchmarks), while negative values signal 
deteriorating financial soundness. 

  The results demonstrate substantial 
alignment between deep learning outputs and 
traditional FSI analysis, with negative deviations 
(actual FSI below optimal) occurring 53% of the study 
period versus 47% positive deviations. This 
oscillation directly reflects varying macroprudential 
policy effectiveness. Notably, the proposed approach 
functions as an early warning system, with negative 
deviations deepening from — 0.005 in 2018 to — 
0.009 in 2019, foreshadowing subsequent stability 
erosion. While initially validating the index's utility 
as a banking sector "thermometer," deeper 
examination reveals limitations. The index couldn't 
anticipate the COVID—19 pandemic, though it 
clearly captured subsequent shocks —most 
dramatically in Q1 2022 when deviations swung 
from +0.001 to — 0.028 following the Russia—
Ukraine War. These extreme fluctuations 
demonstrate the index's sensitivity to external crises 
while highlighting its constrained predictive horizon 
for unprecedented events. 

5. IS THERE AN OPTIMAL PATH FOR FSI? 
GA WILL ANSWER. 

  The origins of genetic algorithms date back 
to Turing’s concept of a "learning machine" that 
mimics evolutionary processes. By the 1960s, 
researchers began actively developing computer 
simulations of biological evolution, with Holland’s 
work playing a pivotal role. These algorithms are 
inspired by natural systems, where gene 
reproduction, crossover, and mutation enhance 
adaptability, allowing complex structures to emerge 
from simpler components. While traditionally rooted 
in Darwinian evolution and Mendelian genetics, the 
approach can also incorporate Lamarckian or 
Baldwinian principles. Goldberg and Holland (1989) 
highlighted the probabilistic nature of genetic 
algorithms, setting them apart from earlier 
optimization techniques that relied on deterministic, 
enumerative, or purely computational methods. The 
standard genetic algorithm, as described by Koza 
(1992) and Kim and Han (2000), follows a structured 
process beginning with the initialization of a 
randomly generated population of fixed–length 
character strings. This is followed by an iterative 
cycle of mutation, where individuals may undergo 
minor random changes, and crossover, where pairs 
of individuals exchange segments to produce new 
offspring. The population evolves through these 
operations until the newly formed individuals are 
evaluated for fitness, with only the fittest advancing 
to the next iteration. The algorithm terminates once 
an individual meets the predefined fitness criteria or 
another stopping condition is satisfied (Hassanat et 
al., 2019). 

  Genetic algorithms iteratively refine 
solutions–or approximate solutions–to a given 
problem, with the primary challenge being the 
effective encoding of the problem into fixed–length 
character strings for computational efficiency. The 
encoding can vary, with options such as binary 
encoding (using 0s and 1s), value encoding 
(incorporating real numbers, characters, or objects), 
permutation encoding, or tree encoding. 
Additionally, each stage of the algorithm–such as 
crossover–can be implemented in different ways, 
including one–point crossover (where genetic 
material is swapped at a random split point) or 
uniform crossover (where each gene is selected 
probabilistically from either parent). Similarly, 
mutation rates and fitness functions can be tailored 
to specific problems; for instance, forecasting tasks 
often use metrics like R–squared or RMSE 
minimization (Katoch et al., 2021). Typically, 
mutation probabilities are kept low to maintain 
stability, while crossover probabilities are set higher 
to promote genetic diversity and improve 
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convergence. To enhance the analytical framework, 
we incorporate genetic algorithms, which provide 
robust optimization capabilities for economic 
modeling. These algorithms enable identification of 
optimal decision variables within specified 
constraints, building on established applications in 
various economic models including the Cobweb 
Model and Game Theory (Arifovic, 1996). In order to 
ensure a cohesive and well–connected application of 
artificial intelligence tools within the framework of 
the proposed approach, the study employed the 
output of the deep learning models described in 
Equation 11 as the fitness function in the genetic 
algorithm. The integration of genetic algorithm 
outputs strengthens our capacity to determine 
optimal FSI values across different economic 
scenarios, offering policymakers valuable insights 
for adaptive financial policy formulation in evolving 
macroeconomic conditions. 

Table: 2: Future scenarios of Egypt's financial 
stability index using the GA. 

Scenario BPI MPI FMI GEI 
Probability 

of Crisis 
Future 

FSI 

Scenario 
1 

0.1 0.29 0.62 0.8 
100% 
Crisis 

Probability 
0.56 

Scenario 
2 

0.08 0.15 0.6 0.8 
80% Crisis 
Probability 

0.57 

Scenario 
3 

0.08 0.19 0.6 0.81 
50% Crisis 
Probability 

0.68 

Scenario 
4 

0.09 0.15 0.6 0.82 
20% Crisis 
Probability 

0.76 

Scenario 
5 

0.1 0.2 0.66 0.92 
No 

Expected 
Crisis 

0.95 

Notes. The analysis presents five distinct future financial 
stability scenarios based on varying probabilities of economic 
crises. Each scenario outlines the optimal FSI and the required 

economic conditions to achieve stability. 

The financial outlook can be categorized into five 
distinct scenarios based on the FSI and the associated 

probabilities. In the severe crisis scenario (100% 
probability), a full–scale financial crisis is projected 
with a future FSI of 0.56, requiring weak performance 
across key economic indicators. The high–risk 
scenario (80% probability) reflects a major economic 
downturn, with a slightly higher future FSI of 0.57, 
suggesting that modest improvements in 
macroeconomic conditions could help stabilize the 
situation. At moderate risk (50% probability), 
financial instability remains significant but 
manageable, with the future FSI increasing to 0.68, 
indicative of moderate economic conditions. The 
low–risk scenario (20% probability) represents a 
relatively stable financial environment, as the future 
FSI rises to 0.76, supported by stronger 
macroeconomic indicators. Finally, the no crisis 
scenario (0% probability) signals the most favorable 
outcome, with the future FSI reaching a peak of 0.95, 
denoting optimal economic stability. 

 The GA did not require extensive computational 
time to identify the optimal value of Egypt's FSI, 
which serves as a new quantitative target for 
macroprudential policymakers. According to the 
results illustrated in Figure (11), the model 
successfully converged to the optimal solution by the 
50th iteration, with a generation rate of 0.9. The 
optimized values of the FSI across the selected 
scenarios were bounded between 0.5 and 1.0. 
Importantly, the results indicate a clear relationship 
between crisis probability and financial stability: as 
the likelihood of economic crises decreases, the FSI 
improves, reflecting enhanced financial stability. 
Conversely, an increased probability of crises 
corresponds to a decline in the FSI. These findings 
highlight the critical importance of improving the 
key economic variables under study to sustain 
financial stability in times of elevated economic 
uncertainty. 
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5. CONCLUSIONS 

 This study investigates the generation of a new 
hypothesis to test and evaluate FSI by proposing a 
novel vision for designing a structural approach. This 
approach will assess and correct the path of FSI in the 
Egyptian economy through quarterly data from 
2005Q1 to 2022Q4. This hypothesis enables the 
assessment of the path and status of FSI. We use 
artificial intelligence applications as a tool to study 
decision–making, focusing specifically on how 
economists diagnose the path of the FSI. The 
proposed approach, designed to evaluate the status 
of FSI, relies on three fundamental stages to achieve 
its goal. The results of the current analytical scenario, 
based on the proposed approach using ML and DL 
models, support the acceptance of the first part of the 
study’s main hypothesis "The FSI, which the study 
aims to design, is suitable as a thermometer through 
which the strength and soundness of the Egyptian 
banking sector can be measured". Furthermore, the 
future analytical scenario–emerging through the 
adoption of one artificial intelligence application, 
namely the GA–also validates the second part of the 
study’s main hypothesis: "It is possible to rely on AI 
applications to control and correct the directional 
path of the FSI within the Egyptian economy". 

 Based on the outcomes of the proposed future 
scenarios and the validity of the study’s hypotheses, 
the following policy recommendations are offered to 
guide decision makers in designing strategic actions 
aimed at reinforcing Egypt’s financial stability. 

Adopt DLM leverage the predictive power and 
explanatory capacity of deep learning models to 
anticipate directional changes in Egypt’s FSI. These 
models offer a robust foundation for 
macroprudential policy formulation by identifying 
current policy deviations and forecasting systemic 
vulnerabilities. Institutionalize the proposed FSI 
model: Rapid adoption of the newly designed 
Financial Stability Index–developed in this study and 
aligned with IMF and World Bank frameworks–
should be prioritized. The model has demonstrated 
strong predictive capacity for pre-crisis downturns, 
particularly relevant given recent shocks such as the 
COVID–19 pandemic and the Russia–Ukraine war. 
Dynamic targeting of macroprudential instruments: 
The effectiveness of macroprudential tools depends 
on their alignment with the financial cycle. A top–
down framework is essential, starting with 
macroeconomic variables (which carried the highest 
input weight of 0.89) and then focusing on banking 
sector indicators (input weight of 0.77). This dual–
level targeting reduces systemic risks and enhances 
resilience to unexpected shocks. Address structural 
weaknesses in the financial system: Egypt's financial 
stability hinges on implementing an optimal risk 
management framework. This includes a flexible and 
adaptive macroprudential regime that dynamically 
integrates with other economic policies to ensure 
macroeconomic and financial system stability. 
Finally, policymakers should focus on improving key 
economic indicators to mitigate risks and enhance 
resilience. 
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