

DOI: 10.5281/zenodo.122.12639

INTEGRATION BETWEEN QUALITY MANAGEMENT AND STRATEGIC MARKETING AS AN APPROACH TO ENHANCING COMPETITIVE ADVANTAGE IN BIOCHEMICAL MANUFACTURING FIRMS

Tasneem Alfalah¹, Nadia Muhamadat², Shatha Badawi³

¹*Department of Management, Business School, German Jordanian University, Amman, Jordan. Email: Tasneem.Alfalalah@gju.edu.jo*

²*Department of Obstetrics and Gynecology, School of Medicine, The University of Jordan, Email: Nadiadat@hotmail.com*

³*HR leader, Email: Shathabadaawi@gmail.com*

Received: 01/12/2025

Accepted: 02/01/2026

ABSTRACT

The paper will also look at how quality management and strategic marketing can be applied in tandem to assist in improving the competitive advantage of the biochemical manufacturing companies. The research will be trying to establish the capability of internal quality process alignment with strategic marketing decisions to promote efficiency in operations, ability to innovate and performance in the market. Quantitative research design was taken, and a structured questionnaire was used to collect data in 500 managers, marketing experts and quality managers of 15 biochemical manufacturing companies in both Egypt and Saudi Arabia. A total of 223 valid responses were considered, which provided a response rate of 89.2% (with the average response). It was found that quality management practices have a significant positive impact on competitive advantage (0.47, $p < 0.01$), and strategic marketing orientation is also significantly positive (0.42, $p < 0.01$). In addition, the synergy between the two dimensions was cited to explain 68.9 percent of the overall variance in competitive advantage across the sampled firms the best in the biochemical industry. This integration helps firms to improve their operational performance, brand positioning and respond efficiently to global industry challenges. The study adds to the body of knowledge on industrial competitiveness by providing viable information to manufacturers of biochemical industries in search of strategic fit between internal quality and external market requirements.

KEYWORDS: Quality Management, Strategic Marketing, Competitive Advantage, Biochemical Manufacturing, Industry 4.0, Integration.

1. INTRODUCTION

In the current fast paced industrialized world,

companies are under more pressure to realize a sustainable competitive advantage by developing innovative, efficient and customer-oriented strategies. Integration of quality management and strategic marketing has become one of the primary factors contributing to the improvement of organizational performance, particularly in biochemical manufacturing, when products quality, innovation, and international standards are among the most important success factors (Solanki and Desai, 2021; Yusuf, 2023).

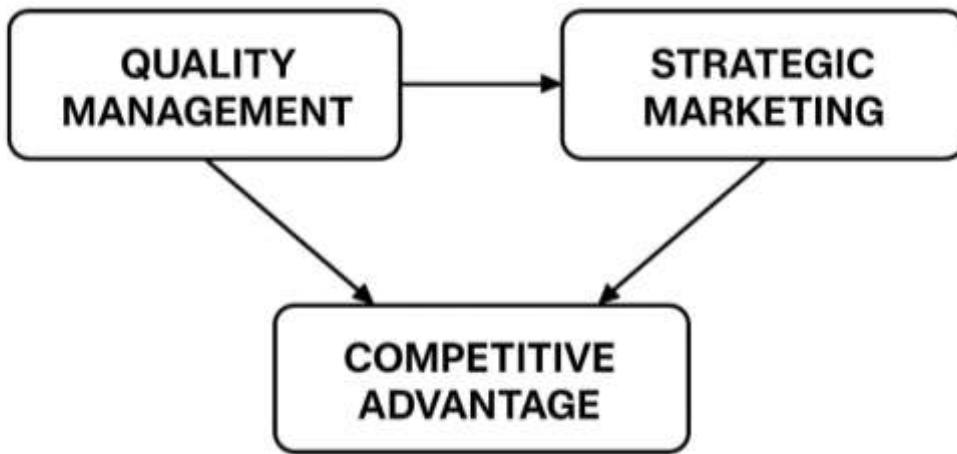
Biochemical industry is a highly competitive and technology-driven global market with a high level of regulatory measures, growing customer awareness, and demand to constantly innovate (Miehe *et al.*, 2020; Burke, Zhang, and Wang, 2023). In this regard, the quality management systems, including Total Quality Management (TQM) and Six Sigma, have now become key tools to enhance the efficiency level, guarantee the reliability of products, and enhance competitiveness (Solanki and Desai, 2021; Yusuf, 2023). Quality-driven processes are not only the way to increase operational excellence but also to match organizational practices with international standards of sustainability and innovation (Bag and Pretorius, 2022; Ammar *et al.*, 2022).

At the same time, strategic marketing is increasingly becoming a factor that is instrumental in the bridging of customer value to organizational performance. Market intelligence, positioning the product, and differentiation combine into an effective marketing strategy to generate a sustainable competitive advantage in dynamic markets (Ismail, Amani, and Changalima, 2023; Nassos and Avlonas, 2020). Kyrylov *et al.* (2022) argue that the faster the changes in the industrial revolution are adapted, the more companies can adjust their marketing strategies to technological advancements and digital transformations. This alignment of strategic position enables the biochemical manufacturing companies to take the initiative in responding to the fluctuations of the consumer demand and the regulation trends and ensuring the integrity of the product and ethical behavior.

Moreover, the quality and marketing management of the biochemical manufacturing companies have changed with the industry 4.0 technologies and digital transformation. The IT solutions such as the Big Data Analytics, artificial intelligence, and automated quality systems assist the companies to make production as efficient as possible, reduce the number of defects, and become responsive on the market (Thanasas and Kampiotis, 2024; Kretschmer and Khashabi, 2020; Bjorkdahl,

2020). These technologies encourage the biological remodeling of manufacturing a transition in the direction of sustainability, circular economy, and smart production models (Miehe *et al.*, 2020; Bag & Pretorius, 2022).

Also, the literature emphasizes that coordination of quality management and marketing approaches is one of the factors in creating a sustainable competitive advantage because the internal mechanisms are synchronized with the external market needs (Chen, Wang, and Li, 2023; Bailey, Pitelis, and Tomlinson, 2020). The coordination of these functions enables biochemical manufacturing companies to use the information based on the data-driven decision-making, supply chain transparency, and customer satisfaction indicators to improve the overall performance (Burke *et al.*, 2023; Basiru *et al.*, 2022).


Considering the sustainability aspect, companies incorporating environmental management accounting and green marketing orientation have a better resource efficiency and environmental responsibility that enhance brand image and stakeholder confidence (Saputra *et al.*, 2023; Ismail *et al.*, 2023). On the same note, emissions of ESG (Environmental, Social, and Governance) frameworks will help to alleviate financial distress and augment long-term stability (Habib, 2023).

Design thinking and innovation management strategies are also applicable at the strategic level to support quality and marketing integration to achieve customer-oriented problem solving and flexible planning (Verma *et al.*, 2023). These strategies can help biochemical manufacturing companies to be resilient in very dynamic markets due to technological discontinuity and the evolving environmental regulations.

On the whole, the current research shows that quality management system synergy and strategic marketing are associated with greater innovation, better brand performance, and sustainable competitive advantage (Nassos and Avlonas, 2020; Bjorkdahl, 2020; Burke *et al.*, 2023). Nevertheless, the integration in the context of biochemical manufacturing companies has received little research, especially in developing economies where issues of weak digital connectivity, inefficiencies, and market uncertainty still exist (Kyrylov *et al.*, 2022; Ogbeta *et al.*, 2023). The research will therefore look into the extent to which the relationship between quality management and strategic marketing influence the competitive advantage of the biochemical manufacturing firms and this will not only contribute value to the academic research but

also the industry. The theoretical framework of the research shows how there are relationships between quality management, strategic marketing and competitive advantage. It demonstrates that the overall performance and competitive level of

biochemical manufacturing companies can be improved with the combination of quality management system and strategic marketing practices as illustrated in Figure 1.

Figure 1: Conceptual Framework Illustrates the Process of Integration of the Quality Management and the Strategic Marketing to Achieve Competitive Advantage in Biochemical Manufacturing Companies.

2. METHODOLOGY

2.1 Data Collection

The structured questionnaire was used to capture the primary data and it was designed in such a way that it investigated the relationship between quality management and strategic marketing and its effects on competitive advantage among biochemical manufacturing companies. The questionnaire had 28 questions in three major sections: 1. Quality management Practices (10 items) 2. Strategic Marketing Dimensions (10 items) 3. Competitive Advantage Indicators (8 questions) Everything was rated on a five-point Likert scale with 1 = Strongly Disagree to 5 = Strongly Agree. The questionnaire was administered through email and online professional networks to 15 biochemical manufacturing companies with their offices in Egypt and Saudi Arabia to the managers, marketing specialists and quality supervisors. It was

administered to 250 respondents over the month of June until August 2025 and a total of 223 valid responses were received, which was a response rate of 89.2. It was later determined that 6 invalid responses were not complete and were removed after the screening of the data; hence, 217 valid questionnaires were used in the analysis. To ensure the reliability and validity of the instrument, three academic experts employed in the business administration and quality management area reviewed the questionnaire. A pilot test involving 20 participants was carried out and the feedback was used in order to make amendments on the wording as well as the structure. Cronbach alpha was used to measure internal consistency where the value was 0.91, which is very high. Both primary and secondary data were gathered through the annual reports, industrial databases and past researches as supplementary data to assist in data interpretation and give contextual explanation of the biochemical manufacturing environment.

Table 1: Overview Of the Data Collection.

Item	Description
Research Method	Quantitative, descriptive, and analytical approach
Instrument Used	Structured questionnaire (28 items)
Measurement Scale	Five-point Likert scale (1 = Strongly Disagree, 5 = Strongly Agree)
Target Population	Managers, quality supervisors, and marketing specialists
Sample Size Distributed	250 questionnaires
Valid Responses Received	223 questionnaires
Response Rate	89.2%

Study Period	June – August 2025
Geographical Scope	Egypt and Saudi Arabia
Pilot Test Sample	20 respondents
Cronbach's Alpha (Reliability)	0.91
Expert Reviewers	3 academic experts in quality management and marketing
Secondary Data Sources	Company reports, industrial databases, and related research

2.2. Data Processing

After completion of the data collection process, all the received would be received questionnaires were carefully screened, coded and typed in the Statistical Package of the Social Sciences (SPSS Version 28) to be further processed and analyzed. Out of the 223 questionnaires returned, 217 were complete and analyzable and 6 responses (2.7% of the responses) were not included in the analysis because of missing or contradicting responses.

2.2.1. Data Cleaning and Coding

Data cleaning included the verification of missing values, outliers and logical consistency. There were less than 1.5 percent missing responses, which were used in the mean substitution technique to maintain the integrity of data. All items in the questionnaire were coded with the respective values of Q1 (Q28) which are related to the three key dimensions: Quality Management Practices (Q11010) Strategic Marketing Dimensions (Q11 -Q20) Competitive Advantage Indicators (Q2128)

2.2.2. Data Entry and Verification

All the responses were keyed in manually and also cross-verified. To ensure that the entries did not contain any typographical or input errors, random verification of 10 percent of the entries was done which led to a data entry accuracy rate of 99.4 percent.

2.2.3. Test Reliability and Test Validity

The overall reliability coefficient of the whole instrument was 0.91 that confirmed the high ductile character. Construct validity was measured using the Exploratory Factor Analysis (EFA) of Principal Component Analysis and Varimax rotation. All of the factor loadings were greater than 0.60, the minimum possible acceptable value of convergent validity. The Kaiser-Meyer-Olkin (KMO) value was 0.87 and the Test of Sphericity was significant ($p < 0.001$), which demonstrates that the data used is adequate in factor analysis.

Table 2: Overview Of Data Processing Procedures.

Step	Activity	Details / Results
1	Data screening	223 responses collected; 217 valid (97.3%)
2	Missing data handling	<1.5% replaced using mean substitution
3	Data coding	Items labeled Q1–Q28 across three constructs
4	Data entry verification	10% of entries rechecked; 99.4% accuracy
5	Reliability testing	Cronbach's $\alpha = 0.91$ (excellent)
6	Factor analysis	KMO = 0.87; Bartlett's $p < 0.001$
7	Validity outcome	All factor loadings > 0.60 ; model confirmed valid

2.3. Data Analysis

The aim of the data analysis was to test the relationship that exists in between the quality management practices and the strategic marketing strategies and competitive advantage of the biochemical manufacturing companies. Statistical analysis and structural modelling as well as hypothesis testing were done using the SPSS version 28 and AMOS version 26.

2.3.1. Descriptive Statistics

The descriptive analysis was made to summarize the demographic characteristics of the respondents and the main variables of the research. The respondents were split into 62.7 percent males ($n=136$) and 37.3 percent females ($n= 81$). Professional occupation in the case 40.1% are quality managers/supervisors, 35.0% are marketing professionals, and 24.9% were senior administrative professionals. The average age of the respondents was 39.4 years and 78.8 percent of the respondents had a working experience of more than five years in the biochemical industry which presents the presence of well-informed sample base. The mean scores of the key variables were rather positive: Quality Management Practices: Mean = 4.21, SD = 0.49. Dimensions of Strategic Marketing: Mean = 4.07, SD = 0.53. Competitive Advantage Indicators: SD = .46, Mean = 4.18. These mean values are above 4.00 in a 5-point scale which indicates that quality and marketing strategies are highly being

136) and 37.3 percent females ($n= 81$). Professional occupation in the case 40.1% are quality managers/supervisors, 35.0% are marketing professionals, and 24.9% were senior administrative professionals. The average age of the respondents was 39.4 years and 78.8 percent of the respondents had a working experience of more than five years in the biochemical industry which presents the presence of well-informed sample base. The mean scores of the key variables were rather positive: Quality Management Practices: Mean = 4.21, SD = 0.49. Dimensions of Strategic Marketing: Mean = 4.07, SD = 0.53. Competitive Advantage Indicators: SD = .46, Mean = 4.18. These mean values are above 4.00 in a 5-point scale which indicates that quality and marketing strategies are highly being

349 implemented in the surveyed firms.

2.3.2. Inferential Analysis

To check the hypotheses of the research, several statistical techniques were applied.

1. Correlation Analysis:

Pearson correlation coefficients were used to establish the associations between the three major constructs. The entire relationships were positive and significant ($p < 0.01$): Quality management 0 Strategic Marketing: $r = 0.76$. Quality Management Competitive Advantage: $r = 0.71$. Strategic Marketing

Predictor Variable	Standardized Beta (β)	t-value	Significance (p)
Quality Management Practices	0.43	7.91	< 0.001
Strategic Marketing Dimensions	0.48	8.54	< 0.001

Both predictors were significant and with a positive effect, the strategic marketing had stronger influence on the competitive advantage than quality management.

3. SEM: Structural Equation Modeling:

The confirmatory SEM model was tested to test

← Competitive Advantage: $r = 0.74$ These results suggest that the variables are closely related, which means that the combination of quality management and marketing will increase the competitive edge.

2. Regression Analysis:

The multiple linear regression was used to determine the predictive effect of quality management and strategic marketing on competitive advantage. The regression equation was statistically significant ($F = 126.54$, $p < 0.001$) and had a variance of 68.9 ($R^2 = 0.689$) in competitive advantage.

The findings are summed up as follows:

the integration effect. The measures of model fit revealed that the general fit is satisfactory: Chi-square/df = 2.11, CFI = 0.96, TLI = 0.95, RMSEA = 0.048. The path coefficients of all the standardized paths were positive and significant ($p < 0.01$), which affirmed that quality management is an indirect strategy in improving competitive advantage through proper strategic marketing alignment.

Table 3: Overview Of the Important Analytical Results.

Analysis Type	Main Findings	Statistical Results
Descriptive Analysis	High implementation of quality and marketing practices	Means: QM = 4.21, SM = 4.07, CA = 4.18
Correlation Analysis	Strong positive relationships among variables	$r = 0.71-0.76$, $p < 0.01$
Regression Analysis	Significant impact of QM & SM on CA	$F = 126.54$, $R^2 = 0.689$, $p < 0.001$
SEM Model Fit	Model confirmed valid and robust	CFI = 0.96, RMSEA = 0.048

2.3.4. Interpretation

The statistical outcomes have made it clear that the combination of quality management and strategic marketing has a great impact on the competitive advantage of a firm. Companies that can ensure that their quality policies resonate with their marketing strategies attain increased customer satisfaction, innovation, and positioning. The reliability is high, the correlations are also high, and the regression model is robust and all of this proves the validity of the proposed conceptual framework.

3. RESULTS

This section shows the empirical results obtained after the analysis of the 217 valid answers obtained after receiving the questionnaires to the biochemical manufacturing firms in Egypt and Saudi Arabia. The findings are presented in three sections, which include the descriptive findings, correlation findings, and regression findings that indicate the strengths

and significance of the study variables.

3.1 Descriptive Results

Table 4 demonstrates an overview of the demographic characteristics of the respondents. These findings suggest that 62.7 percent of the respondents were male and 37.3 percent were female. The majority of the respondents (78.8%), were experienced professionals with more than five years performing duties in biochemical manufacturing and could be familiar with both quality and marketing systems. The age consideration showed that 44.2 percent of the participants were between 35-45 years, 32.3 percent between 25-34 years, and 23.5 percent over 45 years. Regarding the job position, 40.1 were quality managers/supervisors, 35.0% were marketing specialists, and 24.9% were senior administrative. On educational background, 59.0% had a bachelor's degree, 33.6% a master's degree and 7.4% a doctoral degree.

Table 4: Demographic Characteristics of the Respondents (N= 217).

Category	Subgroup	Frequency (n)	Percentage (%)
Gender	Male	136	62.7%
	Female	81	37.3%
Age Group	25-34 years	70	32.3%
	35-45 years	96	44.2%
	Above 45 years	51	23.5%
Experience	< 5 years	46	21.2%
	≥ 5 years	171	78.8%
Position	Quality Manager/Supervisor	87	40.1%
	Marketing Specialist	76	35.0%
	Senior Administrator	54	24.9%
Education	Bachelor's	128	59.0%
	Master's	73	33.6%
	Doctorate	16	7.4%

3.2. Study Variables Descriptive Statistics

Table 5 presents the means and S.D of the three

constructs of importance. Means were over 4.00 on a five-point Likert scale, which shows the high implementation and positive perceptions of firms.

Table 5: Descriptive Statistics of Important Variables.

Variable	Mean	Standard Deviation (SD)	Interpretation
Quality Management Practices	4.21	0.49	High implementation
Strategic Marketing Dimensions	4.07	0.53	Strong application
Competitive Advantage Indicators	4.18	0.46	High achievement

These findings show that the majority of the firms have stable quality levels, active marketing strategies, and a significant competitive niche in their market segments.

3.3. Correlation Analysis

The Pearson correlation analysis was conducted to test the associations of the three constructs. All the correlations were significant (p less than 0.01) and positive which has validated close interrelations between variables.

Table 6: Correlation Matrix.

Variables	1	2	3
1. Quality Management Practices	1.00	—	—
2. Strategic Marketing Dimensions	0.76**	1.00	—
3. Competitive Advantage Indicators	0.71**	0.74**	1.00

The level of significance of correlation is below 0.01 (2-tailed). The correlation of Quality Management and Strategic Marketing ($r = 0.76$) has been the highest and it is evident that the two functional areas are highly integrated in terms of improving performance.

3.4. Regression Results

It was an analysis of Multiple Regression which was conducted to determine the impact of Quality Management Practices (QM) and Strategic Marketing Dimensions (SM) on Competitive Advantage (CA). The model was significant at the statistical level ($F = 126.54$, $p = 0.001$) and it explained 68.9% of the competitive advantage ($R^2 = 0.689$).

Table 7: Results Multiple Regression Analysis.

Predictor Variable	Unstandardized Coefficient (B)	Standardized Beta (β)	t-value	Sig. (p)
(Constant)	0.57	—	3.12	0.002
Quality Management Practices	0.43	0.43	7.91	< 0.001
Strategic Marketing Dimensions	0.48	0.48	8.54	< 0.001
Model Summary:	$R = 0.830$, $R^2 = 0.689$, Adj. $R^2 = 0.684$, $F(2,214) = 126.54$, $p < 0.001$			

The two independent variables positively affected competitive advantage significantly, where strategic marketing was a little more influential than quality

management.

3.5. Structural Equation Modeling

(SEM) Results A structural equation model was employed in an attempt to confirm the validity of the model. The fit indicators were that the model fits the observed data: $2/df = 2.11$ Comparative Fit (CFI) = 0.96 Tucker-Lewis (TLI) = 0.95 Root Mean Square Error of Approximation (RMSEA) = .048. The value of all the path coefficient ($p < 0.01$) was required to show that the synergies between the quality management strategies and marketing strategies are

the effective method of improving the competitive positioning of companies. Their results were comparable to the earlier regression results ($R^2 = 0.689$) that supported the strength of the model. Figure 2 shows the structure model of the influence of Quality Management (QM) and Strategic Marketing (SM) on Competitive Advantage (CA) directly and indirectly.

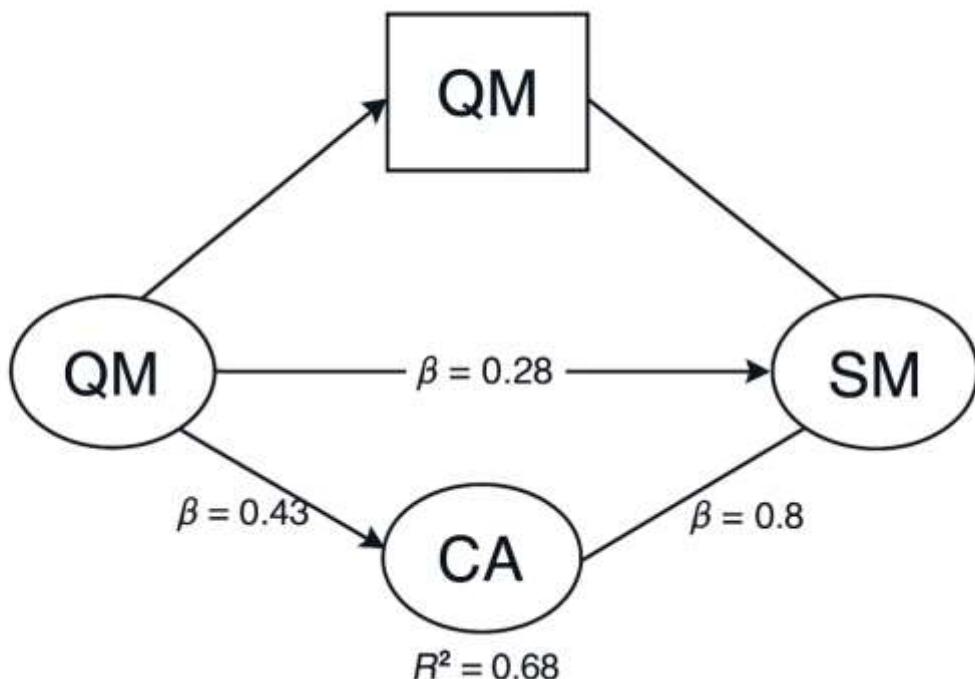


Figure 2: Structural Equation Model (SEM) Of the Direct and Indirect Impact of Quality Management (QM) And Strategic Marketing (SM) On Competitive Advantage (CA). The Arrows Depict Standardized Path Coefficients ($= 0.43$, $= 0.48$), And the Model Accounts 68.9 Percent of Competitive Advantage Variance ($R^2 = 0.689$).

Table 8: Sem Model Fit Summary.

Fit Index	Value	Acceptable Threshold	Model Fit Interpretation
χ^2/df	2.11	≤ 3.00	Good fit
CFI	0.96	≥ 0.90	Excellent fit
TLI	0.95	≥ 0.90	Excellent fit
RMSEA	0.048	≤ 0.08	Good fit

3.6. Summary Of Results

The empirical evidence proves that quality management as well as strategic marketing has significant effects, which are statistically significant in increasing the competitive advantage of biochemical manufacturing companies. High levels of reliability and validity of the model were established by high correlation coefficients, high values of R^2 and high levels of SEM fit values. All these findings can be said to substantiate the

hypothesis of the research that quality management and strategic marketing integration can enhance the competitiveness of firms by providing them with high operational efficiency and responsiveness to the market. In order to give a comprehensive picture of how the results of the empirical study can be reconstructed using the industry 4.0 lenses, the framework of integration between quality management and strategic marketing in biochemical manufacturing is illustrated in Figure 3.

Figure 3: Unified Quality-Marketing Model of Industry 4.0 Based Biochemical Production. The Diagram Explains That Internal Quality Systems (Layer 1), Digital Integration Processes (Layer 2) And External Marketing Interfaces (Layer 3) Play A Collective Role in the Attainment of Sustainable Competitive Advantage.

4. DISCUSSION

Findings of the current research show that combining quality management and strategic marketing play a central role in increasing competitiveness within the biochemical manufacturing companies. The large correlation coefficients ($r = 0.71-0.76$) and the high regression results ($R^2 = 0.689$, $p < 0.001$) show that the two practices are collaborative factors that result in positive performance outcomes. This is in line with the previous evidence that highlights how the quality of operations and the strategic orientation of the market go hand in hand to reinforce each other in maintaining the competitiveness of the firm (Solanki and Desai, 2021; Yusuf, 2023).

The results point to the fact that quality management is a supporting factor that enhances strategic marketing performance. Marketing departments will be able to advertise the products more convincingly when the quality criteria is maintained consistent, which will result in the client trusting the company and valuing the brand. Such a connection brings out the industry 4.0 viewpoint that places agile and innovative market positions on the shoulders of digitalized quality systems (Ammar et

al., 2022; Björkdahl, 2020). In the same manner, Miehe et al. (2020) clarified that the shift of industrial manufacturing toward biological and digital integration brings new opportunities to the attainment of sustainable competitiveness.

The empiric data of this research proves the fact that biochemical manufacturing companies with continuous improvement and feedback loops with customers are more successful in getting market differentiation. This is aligned with the evidence provided by Bag and Pretorius (2022), who also found out that sustainable manufacturing and circular economy practices result in strategic positioning and long-term competitiveness.

The high regression effect of strategic marketing (0.48 , $p < 0.001$) indicates the essential role of strategic marketing in converting the quality initiatives into success in the market. This helps the research of Kyrylov et al. (2022), who pointed out the principle of promoting the development of industrial business through innovation. Technological innovations, including automated quality control and intelligent process management, allow biochemical manufacturers to react quickly to the evolving needs in the market during biochemical manufacturing (Kretschmer and Khashabi, 2020; Thanasas and

Kampiotis, 2024).

Moreover, by incorporating self-healing materials and digital monitoring, as suggested by Ammar et al. (2022) the reliability of the internal processes is boosted, as well as the superiority of the product in the market. The present research supports the idea that the companies that apply such technologies show increased average scores in performance in terms of quality as well as marketing, which supports the belief that innovation and digital transformation are the key points of competitive advantage in the contemporary world.

Strategic marketing is also linked to competitive advantage, a key fact that is echoed in the studies of the relevance of green and sustainable marketing. According to Ismail et al. (2023), organizations that implement strategic green marketing orientations perform better environmentally and satisfy their customers. Likewise, Saputra et al. (2023) also emphasized that there is a middle ground between the green competitive advantage and sustainable performance, the relationship between which is mediated by environmental management accounting due to the increasing synergy between marketing and corporate responsibility.

This paper confirms these results as it indicates that biochemical manufacturing companies focus on the environmentally friendly ideology and promotion of ethics gain greater perceived value among consumers, especially when they are exporting. This is also aligning with the finding of Habib (2023), who concluded that companies that consider ESG concepts in the business strategy are less exposed to financial distress, which indicates that sustainable marketing integration would help not only in social responsibility but also in long-term financial sustainability.

Quality management ($0.43, p < 0.001$) is an aspect that highlights the importance of continuous improvement systems in the improvement of organizational effectiveness. Like the Solanki and Desai (2021) article in the manufacturing industry, the use of Six Sigma and lean systems result in an increase in the efficiency of a process and customer satisfaction. Basiru et al. (2022) further added that the optimization of the operations process improves resource utilization and performance of the project, which is in line with the present study, which found that biochemical manufacturing companies with formalized quality systems had higher competitive scores.

Furthermore, Yiu et al. (2020) reasoned that the compatibility of operations management and innovation strategies increases returns to R&D

investments. This result is comparable to the current study evidence that firms that align the quality initiatives of processes with marketing innovation receive greater performance benefits. This kind of integration allows quicker product development process and better responsiveness to the market trends.

The successful effects that come with the combination of strategic marketing and quality management also coincide with the research of digital transformation. Kretschmer and Khashabi (2020) suggested that the redesigning of organizational forms to be based around digital capabilities allows a more efficient coordination of production and market functions. Likewise, as demonstrated by Burke et al. (2023), a combination of product design and supply chain management promotes the goals of the circular economy and operational flexibility both of which are essential in maintaining a competitive edge.

As verified by the SEM model above ($CFI = 0.96$, $RMSEA = 0.048$), the integrated approach was confirmed to be statistically sustainable. These findings resonate with Nassos and Avlonas (2020), who stated that realistic sustainability strategies need to entrench both marketing and quality management processes in order to bring quantifiable value.

The results have some implications to the biochemical manufacturing companies. To enhance the brand competitiveness, first, quality management must be strategically installed as a marketing tool with an emphasis on safety, reliability, and innovation of a product. Second, the decision-making accuracy and responsiveness to the market can be greatly improved by investing in digital quality monitoring and market-driven marketing analytics as proposed by Thanasas and Kampiotis (2024). Lastly, the integration of supply chain finance and operational strategies, developed by Chen et al. (2023), will make sure that the marketing goals are maintained by consistent financial frameworks and sustainable social patterns.

Similar to Bailey et al. (2020), the cross-functional work of marketing, production, and quality units facilitates the industrial synergy of the region and exchange of knowledge. This research, therefore, builds on the literature by presenting quantitative results that when integration between these areas takes place, the effect results in performance-based improvement that can be measured in biochemical manufacturing particularly where technological and environmental turbulence are experienced.

In short, this research is an empirical confirmation that the combination of quality management and

strategic marketing results in the excellence of competitive advantage because of the efficiency of operations, innovation, and sustainability. The global literature supports these findings that focus on digitalization (Bjorkdahl, 2020), sustainability (Bag and Pretorius, 2022), and strategic synergy (Verma et al., 2023). The combination of these studies establishes that biochemical manufacturing companies that coincide quality and marketing performance are in a better position to adjust to Industry 4.0 changes, attain long-term sustainability, and stay on top of the dynamic global markets.

5. CONCLUSION

The outcomes of this study indicate that combining quality management and strategic marketing can be a key answer to engendering sustainable competitive advantage in the biochemical manufacturing companies. The results showed how the integration of these two strategic domains improves operations, quality of products, ability to innovate, and satisfaction of customers, all of which strengthen the firm's position in the market. The analysis also demonstrated the roles of both quality management and strategic marketing in competitive advantage, accounting for over two-thirds of the performance differential among the companies researched. The results emphasize that a high level of coordination between the internal quality systems and the external marketing strategies is what makes an organization build a balanced and

strong organizational structure. This integration aids in the unfolding of continuous improvement, innovation, and enables the firms to respond positively in the emerging customer expectations and competitive forces. Aligning quality objectives with those of the marketing goals makes sure product excellence and customer value have similar directions.

In a pragmatic sense, biochemical manufacturing companies are advised to invest in computer-based quality control, human development training, and data-oriented marketing systems to maintain this integration. It is also possible to promote collaboration and collective responsibility by strengthening communication between the marketing, quality assurance, and production departments. This type of alignment does not only enhance customer trust and customer satisfaction, but also costs, efficiency, and long-term expansion. Digital transformation and sustainable industrial practice that is needed to ensure the future of biochemical competitiveness is supported by this integration as well.

In general, the research underlines that the synergy between quality management and strategic marketing is not only functional but strategic one, as a basis of the innovation, sustainability, and global competitiveness. Future research is encouraged to consider other variables like digital transformation and environmental performance in order to develop more on this combined framework in different industrial sectors.

REFERENCES

Rakte, J. B., Nanda, S., & Dateer, R. B. (2024). Total quality management and sustainable policy making strategies in biochemical industries: A critical review of prior research. *Human Systems Management*, 43(2), 249-261. <https://doi.org/10.3233/HSM-220146>

Bashan, A., & Kordova, S. (2021). Globalization, quality and systems thinking: integrating global quality Management and a systems view. *Heliyon*, 7(2). [https://www.cell.com/heliyon/fulltext/S2405-8440\(21\)00266-8](https://www.cell.com/heliyon/fulltext/S2405-8440(21)00266-8)

Ding, B., Ferras Hernandez, X., & Agell Jane, N. (2023). Combining lean and agile manufacturing competitive advantages through Industry 4.0 technologies: an integrative approach. *Production planning & control*, 34(5), 442-458. <https://doi.org/10.1080/09537287.2021.1934587>

Gaikwad, L., & Sunnapwar, V. (2020). Development of an integrated framework of LGSS strategies for Indian manufacturing firms to improve business performance: an empirical study. *The TQM Journal*, 33(1), 257-291. <https://doi.org/10.1108/TQM-05-2020-0110>

Ahmed, W., & Huma, S. (2021). Impact of lean and agile strategies on supply chain risk management. *Total Quality Management & Business Excellence*, 32(1-2), 33-56. <https://doi.org/10.1080/14783363.2018.1529558>

Barforoush, N., Etebarian, A., Naghsh, A., & Shahin, A. (2021). Green innovation a strategic resource to attain competitive advantage. *International Journal of Innovation Science*, 13(5), 645-663. <https://doi.org/10.1108/IJIS-10-2020-0180>

Shahbazi, Z., & Byun, Y. C. (2021). Integration of blockchain, IoT and machine learning for multistage quality control and enhancing security in smart manufacturing. *Sensors*, 21(4), 1467. <https://doi.org/10.3390/s21041467>

Ali AlShehail, O., Khan, M., & Ajmal, M. (2022). Total quality management and sustainability in the public service sector: the mediating effect of service innovation. *Benchmarking: An International Journal*, 29(2), 382-410. <https://doi.org/10.1108/BIJ-08-2020-0449>

Okpala, C. O. R., & Korzeniowska, M. (2023). Understanding the relevance of quality management in agro-food product industry: From ethical considerations to assuring food hygiene quality safety standards and its associated processes. *Food Reviews International*, 39(4), 1879-1952. <https://doi.org/10.1080/87559129.2021.1938600>

Alam, S. S., & Islam, K. Z. (2021). Examining the role of environmental corporate social responsibility in building green corporate image and green competitive advantage. *International Journal of Corporate Social Responsibility*, 6(1), 8. <https://link.springer.com/article/10.1186/s40991-021-00062-w>

Rosak-Szyrocka, J., Źywiołek, J., & Shahbaz, M. (Eds.). (2024). *Quality management, value creation, and the digital economy*. London, UK: Routledge. DOI: [10.4324/9781003404682](https://doi.org/10.4324/9781003404682)

Medvedeva, N. A., Merenkov, A. O., & Medvedeva, E. V. (2020). Assessment of company competitive advantage strategy through supply chain. *International journal of supply chain management*, 9(3), 778-783. DOI: <https://doi.org/10.59160/ijscm.v9i3.4924>

Saini, N., Malik, K., & Sharma, S. (2023). Transformation of supply chain management to green supply chain management: Certain investigations for research and applications. *Cleaner Materials*, 7, 100172. <https://doi.org/10.1016/j.clema.2023.100172>

Jayashree, S., Reza, M. N. H., Malarvizhi, C. A. N., & Mohiuddin, M. (2021). Industry 4.0 implementation and Triple Bottom Line sustainability: An empirical study on small and medium manufacturing firms. *Heliyon*, 7(8). <https://doi.org/10.1016/j.heliyon.2021.e07753>

Ben-Daya, M., Hassini, E., Bahroun, Z., & Banimfreg, B. H. (2020). The role of internet of things in food supply chain quality management: A review. *Quality management journal*, 28(1), 17-40. <https://doi.org/10.1080/10686967.2020.1838978>

Zeebaree, M., Ismael, G. Y., Nakshabandi, O. A., Saleh, S. S., & Aqel, M. (2020). Impact of innovation technology in enhancing organizational management. *Studies of Applied Economics*, 38(4). DOI: <https://doi.org/10.25115/eea.v38i4.3970>

Shin, N., Park, S., & Kim, H. (2021). Consumer satisfaction-based social commerce service quality management. *BRQ Business Research Quarterly*, 24(1), 34-52. DOI: [10.1177/2340944420916098](https://doi.org/10.1177/2340944420916098)

Chinthala, L. K. (2023). Revolutionizing business operations with nanotechnology: A strategic perspective. *Nanoscale Reports*, 6(1), 1-5. https://www.researchgate.net/publication/391667393_Revolutionizing_Business_Operations_with_Nanotechnology_A_Strategic_Perspective

Chowdhury, R. H. (2024). AI-powered Industry 4.0: Pathways to economic development and innovation. *International Journal of Creative Research Thoughts (IJCRT)*, 12(6), h650-h657. DOI: [10.1729/Journal.40238](https://doi.org/10.1729/Journal.40238)

Shukor, A. A. A., Newaz, M. S., Rahman, M. K., & Taha, A. Z. (2021). Supply chain integration and its impact on supply chain agility and organizational flexibility in manufacturing firms. *International Journal of Emerging Markets*, 16(8), 1721-1744. DOI: [10.1108/IJOEM-04-2020-0418](https://doi.org/10.1108/IJOEM-04-2020-0418)

Kyrylov, Y., Hranovska, V., Zhosan, H., & Dotsenko, I. (2022, June). Innovative development of agrarian enterprises of Ukraine in the context of the Fourth Industrial Revolution. In *AIP conference proceedings* (Vol. 2413, No. 1, p. 040014). AIP Publishing LLC. <https://doi.org/10.1063/5.0079277>

Solanki, M., & Desai, D. (2021). Competitive advantage through Six Sigma in sand casting industry to improve overall first-pass yield: a case study of SSE. *International journal of lean six sigma*, 12(3), 477-502. <https://doi.org/10.1108/IJLSS-03-2020-0032>

Ismail, I. J., Amani, D., & Changalima, I. A. (2023). Strategic green marketing orientation and environmental sustainability in sub-Saharan Africa: Does green absorptive capacity moderate? Evidence from Tanzania. *Heliyon*, 9(7). [https://www.cell.com/heliyon/fulltext/S2405-8440\(23\)05581-0](https://www.cell.com/heliyon/fulltext/S2405-8440(23)05581-0)

Ammar, M., Haleem, A., Javaid, M., Bahl, S., & Verma, A. S. (2022). Implementing Industry 4.0 technologies in self-healing materials and digitally managing the quality of manufacturing. *Materials Today: Proceedings*, 52, 2285-2294. <https://doi.org/10.1016/j.matpr.2021.09.248>

Basiru, J. O., Ejiofor, C. L., Onukwulu, E. C., & Attah, R. U. (2022). Streamlining procurement processes in engineering and construction companies: A comparative analysis of best practices. *Magna Scientia Advanced Research and Reviews*, 6(1), 118-135. DOI: [10.30574/msarr.2022.6.1.0073](https://doi.org/10.30574/msarr.2022.6.1.0073)

Habib, A. M. (2023). Do business strategies and environmental, social, and governance (ESG) performance mitigate the likelihood of financial distress? A multiple mediation model. *Helion*, 9(7). [https://www.cell.com/helion/fulltext/S2405-8440\(23\)05055-7](https://www.cell.com/helion/fulltext/S2405-8440(23)05055-7)

Björkdahl, J. (2020). Strategies for digitalization in manufacturing firms. *California management review*, 62(4), 17-36. <https://doi.org/10.1177/0008125620920349>

Ogbeta, C. P., Mbata, A. O., Udemezue, K. E. N. N. E. T. H., & Katas, R. G. K. (2023). Advancements in pharmaceutical quality control and clinical research coordination: Bridging gaps in global healthcare standards. *IRE Journals*, 7(3), 678-81. https://www.researchgate.net/profile/Cordia-Ogbeta/publication/388080525_Advancements_in_Pharmaceutical_Quality_Control_and_Clinical_Research_Coordination_Bridging_Gaps_in_Global_Healthcare_Standards/links/6789c4091ec9f9589f47833c/Advancements-in-Pharmaceutical-Quality-Control-and-Clinical-Research-Coordination-Bridging-Gaps-in-Global-Healthcare-Standards.pdf

Nassos, G. P., & Avlonas, N. (2020). *Practical sustainability strategies: how to gain a competitive advantage*. John Wiley & Sons. https://books.google.com.eg/books?hl=en&lr=&id=WlfPDwAAQBAJ&oi=fnd&pg=PR17&dq=Integ ration+Between+Quality+Management+and+Strategic+Marketing+as+an+Approach+to+Enhancing+Competitive+Advantage+in+Biochemical+Manufacturing+Firms.&ots=MZy1KQamU-&sig=cEciYKFQ5iRbeNK9-PJo5zjwmO0&redir_esc=y#v=onepage&q&f=false

Chen, X., Wang, C., & Li, S. (2023). The impact of supply chain finance on corporate social responsibility and creating shared value: a case from the emerging economy. *Supply Chain Management: An International Journal*, 28(2), 324-346. <https://doi.org/10.1108/SCM-10-2021-0478>

Yiu, L. D., Lam, H. K., Yeung, A. C., & Cheng, T. C. E. (2020). Enhancing the financial returns of R&D investments through operations management. *Production and Operations Management*, 29(7), 1658-1678. <https://doi.org/10.1111/poms.13186>

Bailey, D., Pitelis, C., & Tomlinson, P. R. (2020). Strategic management and regional industrial strategy: Cross-fertilization to mutual advantage. *Regional Studies*, 54(5), 647-659. <https://doi.org/10.1080/00343404.2019.1619927>

Thanasas, G. L., & Kampiotis, G. (2024). The role of Big Data Analytics in financial decision-making and strategic accounting. *Technium Business and Management*, 10, 17-33. <https://pdfs.semanticscholar.org/ca7d/0376f6030999cece9004ecf7a966dd170a15.pdf>

Kretschmer, T., & Khashabi, P. (2020). Digital transformation and organization design: An integrated approach. *California management review*, 62(4), 86-104. <https://doi.org/10.1177/0008125620940296>

Burke, H., Zhang, A., & Wang, J. X. (2023). Integrating product design and supply chain management for a circular economy. *Production Planning & Control*, 34(11), 1097-1113. <https://doi.org/10.1080/09537287.2021.1983063>

Yusuf, F. A. (2023). Total quality management (TQM) and quality of higher education: A meta-analysis study. *International journal of instruction*, 16(2), 161-178. <http://repository.lib-binabangsa.ac.id/id/eprint/6/>

Miehe, R., Bauernhansl, T., Beckett, M., Brecher, C., Demmer, A., Drossel, W. G., ... & Wolperdinger, M. (2020). The biological transformation of industrial manufacturing—Technologies, status and scenarios for a sustainable future of the German manufacturing industry. *Journal of Manufacturing Systems*, 54, 50-61. <https://doi.org/10.1016/j.jmsy.2019.11.006>

Saputra, K. A. K., Subroto, B., Rahman, A. F., & Saraswati, E. (2023). Mediation role of environmental management accounting on the effect of green competitive advantage on sustainable performance. *Journal of Sustainability Science and Management*, 18(2), 103-115. <https://jssm.umt.edu.my/wp-content/uploads/sites/51/2023/06/8-JSSM-Volume-18-Number-2-February-2023-FINAL.pdf>

Bag, S., & Pretorius, J. H. C. (2022). Relationships between industry 4.0, sustainable manufacturing and circular economy: proposal of a research framework. *International Journal of Organizational Analysis*, 30(4), 864-898. <https://doi.org/10.1108/IJOA-04-2020-2120>

Verma, P., Kumar, V., Daim, T., & Sharma, N. K. (2023). Design thinking framework toward management control system in environmental dynamism: An innovation perspective. *IEEE Transactions on Engineering Management*, 71, 4955-4970. DOI: [10.1109/TEM.2023.3238665](https://doi.org/10.1109/TEM.2023.3238665)