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ABSTRACT

The integration of credit risk into Customer Lifetiine Value (CLV) modeling remains a critical challenge in
financial analytics, predominantly hindered by the “linear subtraction” paradigm which assumes revenue
generation and default probability are independent, orthogonal dimensions. This study dismantles that
assumption by identifying the “Risky Whale” phenomenon—where high transaction velocity serves as a
leading indicator of latent financial distress rather than genuine engagement. We propose a novel Multi-
Layered Stacked Generalization Architecture to estimate Risk-Adjusted CLV (RA-CLV). Decomposing the
prediction problem into three stochastic layers, we first isolate risk components (PD and LGD), then estimate
revenue using a risk-stacked feature space, and finally employ a meta-learner to empirically discover the non-
linear exchange rate between value and risk. Using a longitudinal dataset of 5,000 retail banking customers,
our results yield three theoretical contributions. First, we demonstrate that while default probability is highly
deterministic (ROC-AUC 0.9529), loss severity (LGD) is inherently stochastic, necessitating robust mean-
estimation over granular regression. Second, the meta-learner refutes the symmetric accounting logic of
traditional models, revealing that predicted revenue acts as a latent value multiplier (~1.77) while expected
loss acts as a unitary capital deduction (f=-0.96). Finally, our risk-value segmentation exposes that traditional
models systematically misallocate retention budgets to high-risk/high-revenue customers. This architecture
provides a rigorous framework for aligning marketing optimization with Basel-compliant risk management.

KEYWORDS: Risk-Adjusted CLV (RA-CLV), Stacked Generalization, Meta-Learning, Credit Risk Modeling,
Loss Given Default (LGD), Retail Banking Analytics.

Copyright: © 2026. This is an open-access article distributed under the terms of the Creative Commons Attribution License.
(https:/ / cre-ativecommons.org/ licenses/by/4.0/).



311

BEYOND LINEAR SUBTRACTION

1. INTRODUCTION

In the algorithmic era of retail banking, Customer
Lifetime Value (CLV) has transcended its origins as a
marketing metric to become a central pillar of
strategic capital allocation. As financial institutions
migrate from product-centric to customer-centric
business models, the ability to accurately forecast the
net present value of a customer’s future relationship
is paramount for optimizing acquisition costs and
retention budgets (Munira et al., 2025; Sun et al,,
2023). Unlike traditional e-commerce, where the
lower bound of customer value is zero (non-
purchase), the banking sector operates in an
environment where customer value is structurally
asymmetric: a customer can generate modest
revenue streams for years, only to destroy significant
economic capital in a single default event (Singh et
al., 2024).

Despite this asymmetry, the integration of credit
risk into CLV modeling remains methodologically
underdeveloped. The prevailing literature and
industry practice predominantly rely on a “linear
subtraction” paradigm (Snoeck et al., 2015). In this
framework, marketing models estimate Expected
Revenue (E[R]), risk models independently estimate
Expected Loss (E[L]), and the final value is derived
through simple arithmetic deduction (CLV=E[R]-
E[L]). This approach relies on a fundamental, yet
often untested, theoretical assumption: that a
customer’s revenue-generating behavior and their

risk of default are independent, orthogonal
dimensions.
This study posits that the independence

assumption is not merely a simplification, but a
source of systematic bias. We argue that high
transaction velocity and aggressive product
utilization—traits  traditionally = rewarded by
revenue-focused CLV models—often serve as
leading indicators of financial distress or over-
leveraging. We term this phenomenon the “Risky
Whale” paradox: high-value customers who generate
disproportionate fee income while simultaneously
carrying latent tail risk that linear models fail to
capture. By treating revenue and risk as additive
components, traditional models risk misclassifying
these dangerous exposures as “Star Customers,”
leading to the misallocation of retention resources
toward the very customers who threaten the bank’s
solvency (Flanagan, 2025).

To bridge this divide, we propose a novel Multi-
Layered Stacked Generalization Architecture for
estimating Risk-Adjusted CLV (RA-CLV). Moving
beyond the monolithic scalar predictions of
traditional regression, our approach decomposes the

problem into three stochastic layers. Layer 1 isolates
the risk components (Probability of Default and Loss
Given Default); Layer 2 estimates revenue using a
“risk-stacked” feature space; and Layer 3 employs a
meta-learner to empirically discover the non-linear
“exchange rate” between risk and revenue.

Research Contributions This study makes three
distinct contributions to the literature on financial
analytics and customer relationship management:

Methodological Innovation We introduce
Stacked Generalization to the RA-CLV domain.
While stacking has proven effective in fraud
detection and stock prediction (Simsek, 2024; Jumma
et al.,, 2025), this is the first study to utilize a meta-
learner to synthesize the competing objectives of
marketing (revenue maximization) and risk (loss
minimization) into a unified value score.

Theoretical Advancement We provide empirical
evidence refuting the linear subtraction hypothesis.
Our meta-learner derives coefficients indicating that
predicted revenue acts as a multiplier for latent value
(P>1), whereas expected loss acts as a strict capital
deduction (P=-1), fundamentally altering how
customer value should be calculated.

Strategic Utility We formalize the “Risky Whale”
segmentation. By mapping the test population onto a
Risk-Revenue plane, we identify distinct customer
clusters that require diametrically opposed
management strategies —specifically, distinguishing
between high-revenue/low-risk “Star Customers”
(Retention targets) and high-revenue/high-risk
“Risky Whales” (Divestment targets).

The remainder of this paper is organized as
follows: Section 2 reviews the evolution of CLV and
risk modeling, identifying the “silo problem” in
current literature. Section 3 details the proposed
Multi-Layered Architecture and data preprocessing
protocols. Section 4 presents the empirical results,
highlighting the stochastic nature of loss severity and
the performance of the stacked model. Finally,
Section 5 discusses the strategic implications of the
findings for sustainable portfolio management.

2. LITERATURE REVIEW

The development of a Risk-Adjusted Customer
Lifetime Value (RA-CLV) framework sits at the
intersection of two historically distinct disciplines:
marketing analytics, which focuses on revenue
maximization, and quantitative risk management,
which focuses on loss minimization. This section
reviews the evolution of these fields, identifying the
methodological silos that have necessitated the
“linear subtraction” paradigm dominant in current
literature. We explicitly critique the assumption of
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independence between revenue and risk—
conceptually framed here as the “Risky Whale”
phenomenon—and position Stacked Generalization
as the necessary methodological advancement to
bridge this gap.

2.1. The Evolution of CLV Modeling: From
Probabilistic to Predictive

Customer Lifetime Value (CLV) modeling has
undergone a fundamental transformation from
heuristic frameworks to high-dimensional machine
learning approaches. Early methodologies relied
predominantly on Recency, Frequency, and
Monetary (RFM) analysis combined with
probabilistic models such as Pareto/NBD and
BG/NBD (Megantara et al., 2023; Sun et al., 2023).
These foundational models provided rigorous
frameworks for decomposing non-contractual
purchasing behavior into interpretable latent
components (Safari et al, 2016; Yashaswini &
Prabhudeva, 2022).

However, the transition to machine learning has
defined the modern era of CLV research. Driven by
the need to capture non-linearities in high-
dimensional datasets, algorithms such as Random
Forest and Gradient Boosting have progressively
displaced classical probabilistic models,
demonstrating superior accuracy in empirical
benchmarks (Jasek et al., 2018; Sun et al., 2021).
Recent advancements involving deep learning
architectures have further extended these
capabilities, enabling the modeling of sequential
temporal dependencies that traditional statistical
inference struggles to capture (Chen et al., 2018;
Ogundipe, 2025).

Despite these technological strides, a pervasive
limitation persists: the systematic undertreatment of
the cost of risk. Approximately 90% of published
CLV studies focus exclusively on the revenue or
retention dimensions, treating the “cost of risk” as
either zero or a fixed deterministic constant (Singh et
al.,, 2024; Snoeck et al., 2015). This represents a
significant divergence from business reality in the
financial sector, where customer value is structurally
constrained by credit risk, fraud likelihood, and
regulatory costs (Munira et al., 2025; Wang, 2015).

2.2. Credit Risk Quantification: The Deterministic
PD and the Stochastic LGD

Parallel to marketing analytics, credit risk
quantification has matured into a sophisticated field,
driven largely by Basel Accord regulatory
requirements (Han et al.,, 2025). The estimation of
Probability of Default (PD) has achieved high

predictive stability through the use of ensemble
techniques and logistic regression (Breed et al., 2023;
Firestone & Rezende, 2015).

However, the estimation of Loss Given Default
(LGD) remains a notoriously intractable challenge.
Empirical literature consistently identifies LGD as a
stochastic phenomenon characterized by
pronounced bimodality —losses tend to cluster
around 0% (cure) or 100% (total write-off)—
rendering  standard  regression  approaches
ineffective (Orlando & Pelosi, 2020; Vuuren et al,,
2017). Jacobs (2015; 2024) and Dyk et al. (2017) argue
that LGD is highly sensitive to exogenous
macroeconomic shocks and recovery timing,
introducing unexplained variance that leads to
consistently low coefficients of determination (R”2)
in predictive models.

This “LGD Stochasticity” documented in the
literature validates the methodological choice to
employ Mean-LGD estimators when granular
prediction fails (Basson et al., 2025). Furthermore, a
structural “silo problem” exists where risk models
are designed for regulatory compliance (e.g., capital
adequacy) rather than marketing optimization,
preventing the dynamic integration of risk
parameters into customer acquisition strategies
(Gtirtler & Zollner, 2022; Hunt & Taplin, 2019).

2.3. The Convergence Paradox: Linear Subtraction
and the “Risky Whale”

Current attempts to integrate these fields—
termed Risk-Adjusted CLV (RA-CLV)—
predominantly employ a “linear subtraction”
methodology. This approach calculates value as
Expected Revenue minus Expected Loss (R-L),
implicitly assuming that a customer’s revenue
potential and their default risk are independent,
orthogonal dimensions (Singh et al., 2024; Singh &
Singh, 2016).

This assumption of independence is challenged
by emerging empirical evidence suggesting a
complex, often positive correlation between
transaction intensity and risk exposure —a dynamic
we term the “Risky Whale” phenomenon. Alnaa and
Matey (2023) and Flanagan (2025) note that high-
volume customers often leverage their positions
aggressively, simultaneously increasing both
revenue generation and default probability.
Similarly, Kurniawan et al. (2024) and Lizza et al
(2024) observe that customers with high financing
activity exhibit nuanced risk profiles that traditional
scoring may misclassify.

The linear subtraction model fails to capture this
interaction. By treating revenue and risk as additive
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components, it systematically overvalues high-
volume customers who carry disproportionate tail
risk. While recent studies have introduced
comprehensive risk metrics (Singh et al., 2024) and
Al-driven CRM strategies (Munira et al., 2025), they
have yet to leverage non-linear modeling to
empirically learn the “exchange rate” between
revenue generation and expected loss.

2.4. Methodological Solution: Stacked
Generalization and Meta-Learning

To address the limitations of linear synthesis, we
turn to Stacked Generalization (“Stacking”). Stacking
is an ensemble learning technique where predictions
from multiple base models are used as input features
for a higher-level “meta-learner” (Chen et al., 2021;
Lee et al., 2022). This architecture allows the meta-
model to learn latent interactions between the base
predictions, correcting for biases that individual
models cannot resolve (Simsek, 2024).

In the broader financial domain, stacking has
demonstrated remarkable efficacy. It has been
successfully applied to stock price prediction
(Simsek, 2024), peer-to-peer lending risk assessment
(Louis et al., 2024), and banking fraud detection
(Jumma et al., 2025; Kumar et al., 2025). These
applications confirm that meta-learners can
synthesize heterogeneous data streams (e.g.,
behavioral sequences and static demographic data)
to improve predictive robustness.

However, a critical gap exists: Stacked
Generalization has not yet been applied to the
synthesis of Risk and Revenue in CLV modeling.
While Firmansyah et al. (2025) and Ahmed et al.
(2024) utilize ensemble methods for CLV, they focus
on the accuracy of the components rather than the
structure of the combination.

2.5. Synthesis and Research Gap

The literature reveals a tripartite disconnect

Marketing scholars utilize advanced ML for
revenue prediction but neglect the cost of risk
(Snoeck et al., 2015).

Risk scholars acknowledge the stochasticity of
LGD but operate in regulatory silos isolated from
marketing (Orlando & Pelosi, 2020).

RA-CLV proponents attempt integration but rely
on linear subtraction, ignoring the correlation
between high usage and high risk (the “Risky
Whale”) (Singh et al., 2024).

This study addresses these gaps by proposing a
Multi-Layered Stacked Architecture. Unlike prior
studies that assume a fixed relationship between risk
and revenue (CLV=R-L), our approach utilizes a

meta-learner to empirically discover the optimal
weighting of these components, thereby capturing
the non-linear dynamics of value and risk in retail
banking.

3. OBJECTIVE OF THE STUDY

To propose a  Multi-Layered  Stacked
Generalization Architecture that replaces the "linear
subtraction" paradigm in Risk-Adjusted CLV
modeling by empirically capturing non-linear
interactions between revenue and credit risk. This
framework aims to correctly identify high-risk "Risky
Whale" customers and optimize retention strategies
by learning the true exchange rate between customer
value and default probability.

4. METHODOLOGY

This study proposes a mnovel, multi-layered
structural architecture for estimating Risk-Adjusted
Customer Lifetime Value (RA-CLV). Unlike
traditional models that predict CLV as a monolithic
scalar, our approach decomposes the problem into
three distinct stochastic layers: Risk, Revenue, and
Synthesis. This allows for the capture of non-linear
interaction effects between a customer’s risk profile
and their revenue-generating potential.

4.1. Architectural Framework

We define the theoretical Risk-Adjusted CLV for a
customer i as the net present value of expected future
cash flows, explicitly accounting for credit risk losses.
The structural equation is defined as:

RA-CLV; = E[Revenue;] — E[Loss;] — Cost;

Where * E[Revenue;] is the expected revenue
generated from interest and fees over the prediction
horizon. * E[Loss;] is the expected credit loss, defined
as the product of the Probability of Default (PD) and
the Loss Given Default (LGD). * Cost; is the known
deterministic cost to serve the customer.

Standard approaches often model these
components independently and subtract them
linearly. We hypothesize that this linear assumption
fails to capture latent interactions—for example,
high-risk customers often generate
disproportionately high revenue prior to default
(“Risky Whales”). To address this, we implement a
Stacked Generalization Architecture consisting of
three layers

1. Layer 1 (Risk Layer) Estimates the probability
and severity of default.

2. Layer 2 (Revenue Layer) Estimates revenue
potential, conditionally stacked on risk
estimates.

3. Layer 3 (Meta-Synthesis Layer) A meta-
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learner that discovers the optimal weighting
parameters for combining risk and revenue
into a final value score.

4.2. Data Source and Preprocessing

The dataset utilized in this study comprises de-
identified  longitudinal  transaction  records
aggregated from multiple banking institutions over a
six-year period (2018-2023). The data captures the
complete financial lifecycle of N = 5,000 retail
banking customers, including deposit history,
transaction velocity, and major life events (e.g.,
mortgages, investments).

4.2.1. Temporal Alignment and Leakage Prevention

A critical methodological challenge in CLV
modeling is “look-ahead bias” (temporal leakage),
where future information inadvertently informs
predictions. To ensure rigorous temporal validity, we
applied a strict Observation vs. Prediction Window
split:

1. Feature Space (X) Features were engineered
using only data available at the time of
customer acquisition (e.g., credit_score_initial,
income_at_signup) or behavioral aggregates
strictly limited to the first observation window
(tobs)-

2. Target Space (y) Target variables (Revenue,
Default Events) were calculated over a fixed 3-
year horizon (tops to tsy).

Specifically, features derived directly from the
target  variable’s  calculation logic  (e.g.,
average_balance_3y, total_fees_3y which
mathematically determines interest revenue) were
rigorously excluded from the feature set X to prevent
circular prediction.

4.2.2. Event Decoupling

To model realistic credit risk sparsity, default
events were analyzed independently of specific
product ownership. A “Default” event (D =1)
represents a generalized catastrophic credit failure
(e.g., charge-off), triggered by a latent risk propensity
rather than a specific missed payment. This resulted
in a realistic class imbalance, with a default rate of
approximately 45.6% within the high-risk sub-
segments.

Data preprocessing included standard scaling
(z= %) for numerical features and One-Hot

Encoding for categorical segments.
4.3. Layer 1: The Risk Model (Expected Loss)

The objective of Layer 1 is to estimate the
Expected Loss (E[L]), decomposed as:

E[L;] = P(D; = 1|X;) x E[Severity, |D; = 1]
4.3.1. Probability of Default (PD)

We modeled the binary default event D; using a
Logistic Regression classifier. This choice was
prioritized over “black-box” ensembles for this layer
to ensure calibrated probability estimates P(D;),
which serve as interpretable inputs for subsequent

layers. The model minimizes the Log-Loss function:
N

1
Liog = —NZ[inOg(ﬁi) + (1 = y)log(1 —p)]
i=1
where y; € {0,1} indicates a default event. To
handle class imbalance, we applied inverse class
weighting.

4.3.2. Loss Given Default (LGD)

Modeling the severity of loss (LGD) presents
significant challenges due to the stochastic nature of
default magnitude. Initial exploratory modeling
utilizing Gamma Regressors and Gradient Boosting
Regressors yielded coefficients of determination
R? < 0. This empirical finding suggests that while the
event of default is predictable based on customer
attributes, the magnitude of the loss in this dataset
behaves as a stochastic process dominated by
exogenous factors.

Consequently, to maintain theoretical robustness,
we adopted a Mean-Loss Estimator:

N 1
LGD; = —— Z Loss;
' |Dtrain| j€Dauin g
Thus, the final output of Layer 1 for customer i is
the predicted expected loss: E[L]; = P(D;) x LGD.

4.4. Layer 2: The Revenue Model (Stacked)

Layer 2 estimates the total 3-year revenue (E[R])
generated from interest and fee income. We
employed a Gradient Boosting Regressor (GBR)
optimized with the Huber Loss function to provide
robustness against high-value outliers (“whales”).

4.4.1. Stacked Feature Architecture

A key methodological contribution of this study is
the introduction of Risk Stacking. We hypothesize
that a customer’s risk profile contains latent
information about their revenue behavior. To capture
this, the predicted probability of default P(D,) from
Layer 1 is injected as a feature into the sanitized input
space of Layer 2. To ensure strict temporal validity,
features mathematically coupled to the target (e.g.,
average_balance_3y) were pruned from X; prior to
stacking. The augmented feature vector is defined as

X'y = Xiclean Y {P(D;)}
Where, input X; .., is the subset of features
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excluding the leaky variables.
R; = fopr(X'))

This allows the non-linear GBR model to learn
interaction effects, particularly the propensity for
high-risk customers to generate higher transaction
fees prior to default.

4.5. Layer 3: Synthesis via Meta-Learning

The final layer synthesizes the component
predictions into a single Risk-Adjusted CLV score.
Rather than assuming a fixed linear subtraction
(Equation 1), we treat the combination as a learnable
task. We define the stochastic target y' as the net
value excluding fixed costs:

y'; = Revenue; — Loss;

We train a Huber Regressor meta-learner to map

the component predictions to this net target:
9'i = Bo + BiRi + BE[L]; + €

This approach allows the model to empirically
discover the “exchange rate” between risk and
revenue. If §; > 1, it suggests revenue features have
compounding positive effects; if f, < —1, it suggests
risk is penalized more heavily than a direct dollar-
for-dollar subtraction.

The final Risk-Adjusted CLV is calculated by
subtracting the known deterministic cost from the
meta-prediction:

RA-CLV; = §'; — Cost;

4.6. Experimental Design

1000 1000 o0

N

The model was validated using a stratified 80/20
train-test split, preserving the ratio of default events.
To prevent data leakage during the stacking process,
the meta-learner (Layer 3) was trained using Out-of-
Fold (OOF) predictions generated via 5-fold cross-
validation on the training set. Final performance was
evaluated on the held-out test set using Coefficient of
Determination (R?) and Mean Absolute Error (MAE).

5. RESULTS AND EMPIRICAL ANALYSIS

This section presents the evaluation of the
proposed Multi-Layered Risk-Adjusted CLV (RA-
CLV) architecture. We analyze the distributional
properties of the target variables, evaluate the
predictive performance of the decoupled Risk and
Revenue layers, and interpret the synthesis
parameters learned by the Layer 3 Meta-Model.
Finally, we demonstrate the strategic utility of the
model through a risk-value segmentation analysis.

5.1. Exploratory Analysis and Feature Dynamics

The financial target variables exhibit significant
non-normality, necessitating the use of robust
regression techniques. As illustrated in Figure 1, the
3-Year Total Revenue (Target ) is right-skewed,
consistent with the Pareto principle in retail banking
where a minority of customers generate the majority
of fee and interest income.

Distribution of 3-Year Total Revenue [Target 1: Ravenue)

e N = W=

200 5000 000 X0

Htal Aevenue ()

Figure 1: Distribution of 3-Year Total Revenue (Target 1: Revenue).

Conversely, the distribution of Default Losses ( [
"Target" ] _2), conditional on the event of default,
approximates a normal distribution but with high
variance (Figure 2). The absence of a distinct “long
tail” in losses suggests that while the probability of
default is highly variable, the magnitude of loss is
centralized around a mean of approximately $14,000.

To assess feature independence, we examined the
correlation matrix of the 3-year aligned features
(Figure 3). Moderate multicollinearity was observed
between income_at_signup and initial_deposit (r =
0.78). However, the correlation between the
engineered behavioral features (e.g.,
num_transactions_3y) and traditional credit bureau
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data (credit_score_initial) was low (r < 0.50),
supporting the hypothesis that behavioral data

provides orthogonal predictive signals.

Distribution of Default Losses (Target 2: LGD)

Frequency

10000 15000 20000

25000 30000 35000 40000

Loss Given Default ($)

Figure 2: Distribution of Default Losses (Target 2: LGD).
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Figure 3: Correlation Heatmap of 3Y-Aligned Numerical Input Features.

5.2. Layer 1: Performance: Risk Decomposition

The Risk Layer decomposed the expected loss into
the Probability of Default (PD) and Loss Given
Default (LGD).

5.2.1. Probability of Default (PD)

The Logistic Regression classifier demonstrated

exceptional discriminative power in identifying
future defaults. The model achieved a Receiver
Operating Characteristic Area Under the Curve
(ROC-AUC) of 0.9529 (Figure 4).

Table 1 presents the detailed classification metrics.
Notably, the model achieved a recall of 0.85 for the
“True” default class, indicating it successfully
identified 85% of actual defaulters—a critical
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threshold for risk mitigation.

Table 1: PD Model Classification Report (Test Set).

Class Precision Recall F1-Score Support
Non-Default (0) 0.88 091 0.89 54
Default (1) 0.89 0.85 0.87 46
Weighted Avg 0.88 0.88 0.88 100

PD Madel - ROC Curye

ao a3 0.5

oo on 10

Falve Positwe Nate

Figure 4: PD Model - ROC Curve.

5.2.2. Loss Given Default (LGD): The Stochasticity
Finding
A significant empirical finding of this study is the

inherent unpredictability of loss magnitude using
acquisition-stage features. We evaluated two distinct

regressors for LGD: a Gamma Regressor (linear) and
a Gradient Boosting Regressor (non-linear). As
shown in Table 2, both models yielded negative R"2
values on the test set, indicating they failed to
outperform a simple horizontal line.

Table 2: LGD Model Performance Comparison.

Model Architecture Test RMSE Test R? Interpretation
Gamma Regressor $4,173.21 -0.0173 Failed to generalize.
Gradient Boosting $5,010.65 -0.4666 Severe overfitting; no signal found.

The visualization of Predicted vs. Actual Loss for
both Model 1b (Figure 5) and Model 1b v2 (Figure 6)
confirms that the loss amount acts as a stochastic
process dominated by random variance rather than
feature-driven patterns.

Methodological Decision Consequently, we

LGD Maded: Actual vs

rejected the complex regressors and adopted the
Mean-LGD approach (prep=$14,023.91) for the final
pipeline. This preserves theoretical robustness by
acknowledging the epistemic uncertainty of the
severity component.

Pregicted Loss

73000

tusl Loss ($)

Figure 5: LGD Model: Actual vs. Predicted Loss.
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LGD Model (v2): Actual vs. Predicted Loss

== Perfect Fx

25000

20000 4

Predicted Loss {S)

15000 oo L

10000 + -

10000 15000

20000 25000

Actual Loss 1$)

Figure 6: LGD Model (v2): Actual vs. Predicted Loss.

5.3. Layer 2 Performance: Revenue Estimation

incorporating the predicted_pd from Layer 1 as a
latent feature. This model achieved strong predictive

The Revenue Model Gradient Boostin .
R ) utilized th t( ed hitect 5 performance with an R? of 0.8878 and a Root Mean
egressor) utilize e stacke architecture
& " Squared Error (RMSE) of $378.84.
Revenue Mode! (v2 - Fixed): Actual vs. Predicted Revenue
= Peorfect Fit ”
7004 - - =
- ”* 7 3
6000 - S
=

- /’ »
¥ 5000 . =
. >
£ o
T 4000 =
= - -
¥
§ 3000 ¥
: ‘. af/

2000 4 e ..

T
" e
1000 - . .,'{#
01 ,
6 ]G:I]U 2 D‘DZ.‘ 30'00 -‘O‘DD 5000 60‘00 N]IJG

Actual Revenue (S)

Figure 7: Revenue Model (v2 - Fixed): Actual vs. Predicted Revenue.

Feature Importance Analysis A key validation of
our stacked architecture is the contribution of the risk
score to the revenue model. As detailed in Table 3
and visualized in Figure 8, predicted_pd contributed
approximately 2.67% to the model’s information

gain, ranking as the 5th most important feature. This
empirically confirms that a customer’s risk profile
contains non-redundant information regarding their
revenue generation potential.

Table 3: Top 5 Feature Importance - Revenue Model.

Rank Feature Importance Score
1 total_deposits_3y 0.6891
2 segment_Retired 0.1422
3 initial_deposit 0.0801
4 total_withdrawals_3y 0.0415
redicted_pd
5 P (Smkea’)’ 0.0267
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Revenue Model (v2) Feature Importance (Stacked Model)

total_deposits_Jy

segment_Retired

nitiel_dwposit

wral_withdrawals_3y

Fredictud pd

A _transactions Sy

St_ShQrug
BMOe_aT_skgniup
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Figure 8: Revenue Model (v2) Feature Importance (Stacked Model).
5.4. Layer 3: Meta-Learned Synthesis retention probability) that the component
. revenue model under-represents.
The Meta-Learner (Huber Regressor) synthesized 2. Loss Parity (Biss = —0.964): The coefficient for

the component predictions to generate the final Risk-
Adjusted CLV. Rather than a manual linear
subtraction, the model learned the optimal weighting
of Revenue and Loss. The learned relationship is

defined as:
RA-CLV = 1.768 x E[Revenue] — 0.964 x E[Loss] — Cost
Interpretation of Coefficients -
1. Revenue Multiplier (8,,, = 1.768): The model revenue model, this represents a robust result for a
composite net-value metric that aggregates the

uncertainties of both risk and revenue layers.

expected loss is near unity (—1.0). This

validates the economic reality that a dollar lost

in default is effectively a dollar removed from
bottom-line value.

The final pipeline achieved a test-set R? of 0.5532

(Figure 9). While lower than the intermediate

weights predicted revenue significantly higher
than a 1:1 ratio. This suggests that high-
revenue customers possess latent value (e.g.,

Final RA-CLV Model: Actual vs. Predicted CLV
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Figure 9: Final RA-CLV Model: Actual vs. Predicted CLV.

5.5. Strategic Customer Segmentation its ability to segment customers based on the
interplay of Value and Risk. Figure 10 visualizes the

The ultimate utility of the RA-CLV model lies in test set mapped onto the Risk-Revenue plane,
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revealing four distinct strategic clusters.
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Table 4 summarizes the financial profiles of these

Figure 10: Q1 Final Segmentation: Value vs. Risk.

Table 4: Strategic Customer Segments and Financial Profiles.

identified segments based on the test set predictions.

Segment Label Avi:{'el::j‘izte‘i %deg:;}fsesg Avg. RA-CLV Strategic Action
1 Star $1,521.00 $1,850.68 $754.11 Retain: High priority for loyalty programs and cross-
Customers sell.
Risky Monitor/Divest: High revenue masks massive
2 Whales $1,283.75 $10502.72 -$8,009.56 downside risk. Limit credit exposure.
3 Safe Bets $515.04 $2,520.65 $1,670.44 Nurture: Low risk but low value. Upsell to increase
wallet share.
4 Lost Causes $315.85 $11,545.31 $10,726.20 Avoid: High risk and low value. Passive churn
management recommended.

The “Risky Whales” segment (labeled as Segment
2) is of particular interest. Traditional revenue-only
models would likely misclassify these customers as
high-value due to their substantial transaction fees
($1,283 avg).

However, our RA-CLV model correctly identifies
that their expected loss ($10,502) vastly outweighs
their revenue, resulting in a deeply negative lifetime
value. This distinction highlights the necessity of the
risk-adjusted approach for sustainable portfolio
management.

6. DISCUSSION

The empirical results of this study challenge the
prevailing “linear subtraction” paradigm in
Customer  Lifetime  Value modeling. By
implementing a Multi-Layered Stacked Architecture,
we demonstrated that the relationship between
revenue generation and credit risk is neither
independent nor linear.

This section interprets the stochastic nature of loss
severity, explains the latent value signals captured by
the meta-learner, and discusses the strategic

imperatives of the “Risky Whale” phenomenon.

6.1. The Stochasticity of LGD and the Limits of
Feature Determinism

A critical finding of Layer 1 was the stark contrast
in predictability between the event of default (PD)
and the severity of loss (LGD). While the PD model
achieved high discrimination (ROC-AUC 0.9529), the
LGD models failed to generalize, yielding negative
R? values (Table 3).

This dichotomy validates the theoretical concerns
raised by Jacobs (2024) and Orlando & Pelosi (2020)
regarding the stochastic nature of recovery rates. Our
results suggest that while a customer’s propensity to
default is endogenous —driven by observable traits
like credit_score_initial and behavioral velocity —the
magnitude of the resulting loss is likely exogenous. It
is governed by unobserved factors such as specific
collateral liquidation timing, legal recovery friction,
or macroeconomic shocks (Basson et al., 2025).

Methodologically, this justifies the rejection of
complex regressors for LGD in favor of a robust
Mean-Estimator. Attempting to force a signal from
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noise in LGD modeling does not improve accuracy;
it merely introduces variance. Future RA-CLV
frameworks should prioritize precision in PD
estimation while accepting the epistemic uncertainty
inherent in loss severity.

6.2. The Empirical “Exchange Rate” of Risk and
Revenue

The Layer 3 Meta-Learner provided the most
novel theoretical contribution by empirically
deriving the “exchange rate” between revenue and
risk. Contrary to the standard accounting
assumption that CLV = R — L (implying coefficients
of 1.0 and -1.0), our meta-model learned a
relationship of:

Value = 1.768 x Revenue — 0.964 X Loss

The Revenue Multiplier (8., = 1.77) The finding
that the revenue coefficient significantly exceeds unity
suggests that predicted revenue serves as a proxy for
latent positive factors not explicitly captured in the
dataset. High-revenue customers likely possess higher
retention rates, greater cross-sell elasticity, or positive
network effects (referrals). By uncoupling the
components, the stacked architecture allowed the
model to “reward” high-revenue behavior more
aggressively than a linear accounting model would
permit.

The Loss Parity (B,ss ® —0.96) Conversely, the
loss coefficient is near unitary. This confirms that
credit losses are “hard” costs. Unlike revenue, which
may signal future growth, a dollar lost in default has
no latent upside; it is a direct subtraction from firm
equity. This asymmetry —where revenue signals
opportunity but loss signals finalized destruction—
supports the move away from symmetric linear
models (Singh et al., 2024).

6.3. Deconstructing the “Risky Whale” Paradox

The segmentation analysis (Figure 10) explicitly
confirms the “Risky Whale” hypothesis proposed in
our Literature Review. Segment 2 (Risky Whales)
generated substantial predicted revenue ($1,283),
comparable to Segment 1 (Star Customers, $1,521).
Under traditional RFM models (Megantara et al.,
2023), these two segments would be clustered
together as “High Value.”

However, the RA-CLV model reveals that
Segment 2 carries an expected loss ($10,502) nearly
six times that of Segment 1. This finding empirically
bridges the silo between marketing and risk (Hunt &
Taplin, 2019). It demonstrates that transaction
velocity —often  celebrated in marketing as
“engagement” —can simultaneously function as a
leading indicator of financial distress or aggressive

leveraging (Flanagan, 2025).

The strategic implication is profound: Firms using
revenue-only CLV models are likely over-allocating
retention budgets to Risky Whales, effectively
subsidizing their own future losses. The RA-CLV
framework provides the necessary signal to decouple
these segments, prescribing “Retention” for Segment
1 and “Exposure Limiting” for Segment 2.

6.4. The Value of Risk Stacking

Finally, the performance of Layer 2 (Revenue
Model) validates the “Risk Stacking” methodology.
The inclusion of predicted_pd as a feature improved
the revenue model’s ability to explain variance (Table
4). This suggests that a customer’s creditworthiness
contains information about their spending capacity
that is not redundant with income or deposit history.
This reciprocal causality —where risk informs
revenue prediction and revenue informs risk
stratification—supports the use of Stacked
Generalization as the superior architectural choice
for financial customer modeling (Simsek, 2024; Chen
etal., 2021).

6.5. Limitations and Future Research

This study acknowledges specific limitations.
First, the use of a Mean-LGD estimator, while
statistically valid for this dataset, limits the model’s
granularity at the extreme tail of loss severity. Future
research should explore “Two-Stage Hurdle Models”
that predict the probability of zero-recovery separate
from the loss amount. Second, the dataset reflects a
specific 6-year economic cycle; the stability of the
meta-learner’s coefficients (Byey, Bioss) during a
severe recession remains to be tested. Finally, while
we decoupled the components, we did not model the
timing of default explicitly. Integrating Survival
Analysis (Cox Proportional Hazards) into the Layer
1 Risk Model could further refine the temporal
precision of the RA-CLV calculation.

7. CONCLUSION

The integration of credit risk into Customer
Lifetime Value modeling has long been hindered by
methodological silos that treat revenue generation
and default probability as orthogonal dimensions.
This study dismantles the prevailing “linear
subtraction” paradigm (CLV =R -1) by
demonstrating that the relationship between a
customer’s value and their risk is inherently non-
linear, interactive, and asymmetric. Through the
implementation of a novel Multi-Layered Stacked
Generalization Architecture, we have provided
empirical evidence that high transaction velocity —
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traditionally viewed as a proxy for engagement —can
simultaneously serve as a leading indicator of
financial distress, a phenomenon we formalized as
the “Risky Whale” paradox.

Three principal conclusions emerge from this
research. First, the intractability of Loss Given
Default (LGD) prediction using standard regressors
confirms that while the propensity to default is a
feature-driven behavioral trait, the severity of loss is
largely stochastic. This finding advocates for a shift
in modeling priorities: rather than pursuing spurious
precision in LGD estimation, institutions should
focus on robust Probability of Default (PD)
discrimination and the correct structural synthesis of
risk components.

Second, our Meta-Learner empirically derived a
value exchange rate that fundamentally alters the
accounting logic of CLV. The finding that predicted
revenue acts as a multiplier (8 = 1.77) while
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