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ABSTRACT 

The integration of credit risk into Customer Lifetime Value (CLV) modeling remains a critical challenge in 
financial analytics, predominantly hindered by the “linear subtraction” paradigm which assumes revenue 
generation and default probability are independent, orthogonal dimensions. This study dismantles that 
assumption by identifying the “Risky Whale” phenomenon—where high transaction velocity serves as a 
leading indicator of latent financial distress rather than genuine engagement. We propose a novel Multi-
Layered Stacked Generalization Architecture to estimate Risk-Adjusted CLV (RA-CLV). Decomposing the 
prediction problem into three stochastic layers, we first isolate risk components (PD and LGD), then estimate 
revenue using a risk-stacked feature space, and finally employ a meta-learner to empirically discover the non-
linear exchange rate between value and risk. Using a longitudinal dataset of 5,000 retail banking customers, 
our results yield three theoretical contributions. First, we demonstrate that while default probability is highly 
deterministic (ROC-AUC 0.9529), loss severity (LGD) is inherently stochastic, necessitating robust mean-
estimation over granular regression. Second, the meta-learner refutes the symmetric accounting logic of 
traditional models, revealing that predicted revenue acts as a latent value multiplier (β≈1.77) while expected 
loss acts as a unitary capital deduction (β≈-0.96). Finally, our risk-value segmentation exposes that traditional 
models systematically misallocate retention budgets to high-risk/high-revenue customers. This architecture 
provides a rigorous framework for aligning marketing optimization with Basel-compliant risk management. 

KEYWORDS: Risk-Adjusted CLV (RA-CLV), Stacked Generalization, Meta-Learning, Credit Risk Modeling, 
Loss Given Default (LGD), Retail Banking Analytics. 
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1. INTRODUCTION 

In the algorithmic era of retail banking, Customer 
Lifetime Value (CLV) has transcended its origins as a 
marketing metric to become a central pillar of 
strategic capital allocation. As financial institutions 
migrate from product-centric to customer-centric 
business models, the ability to accurately forecast the 
net present value of a customer’s future relationship 
is paramount for optimizing acquisition costs and 
retention budgets (Munira et al., 2025; Sun et al., 
2023). Unlike traditional e-commerce, where the 
lower bound of customer value is zero (non-
purchase), the banking sector operates in an 
environment where customer value is structurally 
asymmetric: a customer can generate modest 
revenue streams for years, only to destroy significant 
economic capital in a single default event (Singh et 
al., 2024). 

Despite this asymmetry, the integration of credit 
risk into CLV modeling remains methodologically 
underdeveloped. The prevailing literature and 
industry practice predominantly rely on a “linear 
subtraction” paradigm (Snoeck et al., 2015). In this 
framework, marketing models estimate Expected 
Revenue (E[R]), risk models independently estimate 
Expected Loss (E[L]), and the final value is derived 
through simple arithmetic deduction (CLV=E[R]-
E[L]). This approach relies on a fundamental, yet 
often untested, theoretical assumption: that a 
customer’s revenue-generating behavior and their 
risk of default are independent, orthogonal 
dimensions. 

This study posits that the independence 
assumption is not merely a simplification, but a 
source of systematic bias. We argue that high 
transaction velocity and aggressive product 
utilization—traits traditionally rewarded by 
revenue-focused CLV models—often serve as 
leading indicators of financial distress or over-
leveraging. We term this phenomenon the “Risky 
Whale” paradox: high-value customers who generate 
disproportionate fee income while simultaneously 
carrying latent tail risk that linear models fail to 
capture. By treating revenue and risk as additive 
components, traditional models risk misclassifying 
these dangerous exposures as “Star Customers,” 
leading to the misallocation of retention resources 
toward the very customers who threaten the bank’s 
solvency (Flanagan, 2025). 

To bridge this divide, we propose a novel Multi-
Layered Stacked Generalization Architecture for 
estimating Risk-Adjusted CLV (RA-CLV). Moving 
beyond the monolithic scalar predictions of 
traditional regression, our approach decomposes the 

problem into three stochastic layers. Layer 1 isolates 
the risk components (Probability of Default and Loss 
Given Default); Layer 2 estimates revenue using a 
“risk-stacked” feature space; and Layer 3 employs a 
meta-learner to empirically discover the non-linear 
“exchange rate” between risk and revenue. 

Research Contributions This study makes three 
distinct contributions to the literature on financial 
analytics and customer relationship management: 

Methodological Innovation We introduce 
Stacked Generalization to the RA-CLV domain. 
While stacking has proven effective in fraud 
detection and stock prediction (Simsek, 2024; Jumma 
et al., 2025), this is the first study to utilize a meta-
learner to synthesize the competing objectives of 
marketing (revenue maximization) and risk (loss 
minimization) into a unified value score. 

Theoretical Advancement We provide empirical 
evidence refuting the linear subtraction hypothesis. 
Our meta-learner derives coefficients indicating that 
predicted revenue acts as a multiplier for latent value 
(β>1), whereas expected loss acts as a strict capital 
deduction (β≈-1), fundamentally altering how 
customer value should be calculated. 

Strategic Utility We formalize the “Risky Whale” 
segmentation. By mapping the test population onto a 
Risk-Revenue plane, we identify distinct customer 
clusters that require diametrically opposed 
management strategies—specifically, distinguishing 
between high-revenue/low-risk “Star Customers” 
(Retention targets) and high-revenue/high-risk 
“Risky Whales” (Divestment targets). 

The remainder of this paper is organized as 
follows: Section 2 reviews the evolution of CLV and 
risk modeling, identifying the “silo problem” in 
current literature. Section 3 details the proposed 
Multi-Layered Architecture and data preprocessing 
protocols. Section 4 presents the empirical results, 
highlighting the stochastic nature of loss severity and 
the performance of the stacked model. Finally, 
Section 5 discusses the strategic implications of the 
findings for sustainable portfolio management. 

2. LITERATURE REVIEW 

The development of a Risk-Adjusted Customer 
Lifetime Value (RA-CLV) framework sits at the 
intersection of two historically distinct disciplines: 
marketing analytics, which focuses on revenue 
maximization, and quantitative risk management, 
which focuses on loss minimization. This section 
reviews the evolution of these fields, identifying the 
methodological silos that have necessitated the 
“linear subtraction” paradigm dominant in current 
literature. We explicitly critique the assumption of 
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independence between revenue and risk—
conceptually framed here as the “Risky Whale” 
phenomenon—and position Stacked Generalization 
as the necessary methodological advancement to 
bridge this gap. 

2.1. The Evolution of CLV Modeling: From 
Probabilistic to Predictive 

Customer Lifetime Value (CLV) modeling has 
undergone a fundamental transformation from 
heuristic frameworks to high-dimensional machine 
learning approaches. Early methodologies relied 
predominantly on Recency, Frequency, and 
Monetary (RFM) analysis combined with 
probabilistic models such as Pareto/NBD and 
BG/NBD (Megantara et al., 2023; Sun et al., 2023). 
These foundational models provided rigorous 
frameworks for decomposing non-contractual 
purchasing behavior into interpretable latent 
components (Safari et al., 2016; Yashaswini & 
Prabhudeva, 2022). 

However, the transition to machine learning has 
defined the modern era of CLV research. Driven by 
the need to capture non-linearities in high-
dimensional datasets, algorithms such as Random 
Forest and Gradient Boosting have progressively 
displaced classical probabilistic models, 
demonstrating superior accuracy in empirical 
benchmarks (Jasek et al., 2018; Sun et al., 2021). 
Recent advancements involving deep learning 
architectures have further extended these 
capabilities, enabling the modeling of sequential 
temporal dependencies that traditional statistical 
inference struggles to capture (Chen et al., 2018; 
Ogundipe, 2025). 

Despite these technological strides, a pervasive 
limitation persists: the systematic undertreatment of 
the cost of risk. Approximately 90% of published 
CLV studies focus exclusively on the revenue or 
retention dimensions, treating the “cost of risk” as 
either zero or a fixed deterministic constant (Singh et 
al., 2024; Snoeck et al., 2015). This represents a 
significant divergence from business reality in the 
financial sector, where customer value is structurally 
constrained by credit risk, fraud likelihood, and 
regulatory costs (Munira et al., 2025; Wang, 2015). 

2.2. Credit Risk Quantification: The Deterministic 
PD and the Stochastic LGD 

Parallel to marketing analytics, credit risk 
quantification has matured into a sophisticated field, 
driven largely by Basel Accord regulatory 
requirements (Han et al., 2025). The estimation of 
Probability of Default (PD) has achieved high 

predictive stability through the use of ensemble 
techniques and logistic regression (Breed et al., 2023; 
Firestone & Rezende, 2015). 

However, the estimation of Loss Given Default 
(LGD) remains a notoriously intractable challenge. 
Empirical literature consistently identifies LGD as a 
stochastic phenomenon characterized by 
pronounced bimodality—losses tend to cluster 
around 0% (cure) or 100% (total write-off)—
rendering standard regression approaches 
ineffective (Orlando & Pelosi, 2020; Vuuren et al., 
2017). Jacobs (2015; 2024) and Dyk et al. (2017) argue 
that LGD is highly sensitive to exogenous 
macroeconomic shocks and recovery timing, 
introducing unexplained variance that leads to 
consistently low coefficients of determination (R^2) 
in predictive models. 

This “LGD Stochasticity” documented in the 
literature validates the methodological choice to 
employ Mean-LGD estimators when granular 
prediction fails (Basson et al., 2025). Furthermore, a 
structural “silo problem” exists where risk models 
are designed for regulatory compliance (e.g., capital 
adequacy) rather than marketing optimization, 
preventing the dynamic integration of risk 
parameters into customer acquisition strategies 
(Gürtler & Zöllner, 2022; Hunt & Taplin, 2019). 

2.3. The Convergence Paradox: Linear Subtraction 
and the “Risky Whale” 

Current attempts to integrate these fields—
termed Risk-Adjusted CLV (RA-CLV)—
predominantly employ a “linear subtraction” 
methodology. This approach calculates value as 
Expected Revenue minus Expected Loss (R-L), 
implicitly assuming that a customer’s revenue 
potential and their default risk are independent, 
orthogonal dimensions (Singh et al., 2024; Singh & 
Singh, 2016). 

This assumption of independence is challenged 
by emerging empirical evidence suggesting a 
complex, often positive correlation between 
transaction intensity and risk exposure—a dynamic 
we term the “Risky Whale” phenomenon. Alnaa and 
Matey (2023) and Flanagan (2025) note that high-
volume customers often leverage their positions 
aggressively, simultaneously increasing both 
revenue generation and default probability. 
Similarly, Kurniawan et al. (2024) and Lizza et al. 
(2024) observe that customers with high financing 
activity exhibit nuanced risk profiles that traditional 
scoring may misclassify. 

The linear subtraction model fails to capture this 
interaction. By treating revenue and risk as additive 
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components, it systematically overvalues high-
volume customers who carry disproportionate tail 
risk. While recent studies have introduced 
comprehensive risk metrics (Singh et al., 2024) and 
AI-driven CRM strategies (Munira et al., 2025), they 
have yet to leverage non-linear modeling to 
empirically learn the “exchange rate” between 
revenue generation and expected loss. 

2.4. Methodological Solution: Stacked 
Generalization and Meta-Learning 

To address the limitations of linear synthesis, we 
turn to Stacked Generalization (“Stacking”). Stacking 
is an ensemble learning technique where predictions 
from multiple base models are used as input features 
for a higher-level “meta-learner” (Chen et al., 2021; 
Lee et al., 2022). This architecture allows the meta-
model to learn latent interactions between the base 
predictions, correcting for biases that individual 
models cannot resolve (Simsek, 2024). 

In the broader financial domain, stacking has 
demonstrated remarkable efficacy. It has been 
successfully applied to stock price prediction 
(Simsek, 2024), peer-to-peer lending risk assessment 
(Louis et al., 2024), and banking fraud detection 
(Jumma et al., 2025; Kumar et al., 2025). These 
applications confirm that meta-learners can 
synthesize heterogeneous data streams (e.g., 
behavioral sequences and static demographic data) 
to improve predictive robustness. 

However, a critical gap exists: Stacked 
Generalization has not yet been applied to the 
synthesis of Risk and Revenue in CLV modeling. 
While Firmansyah et al. (2025) and Ahmed et al. 
(2024) utilize ensemble methods for CLV, they focus 
on the accuracy of the components rather than the 
structure of the combination. 

2.5. Synthesis and Research Gap 

The literature reveals a tripartite disconnect 
Marketing scholars utilize advanced ML for 

revenue prediction but neglect the cost of risk 
(Snoeck et al., 2015). 

Risk scholars acknowledge the stochasticity of 
LGD but operate in regulatory silos isolated from 
marketing (Orlando & Pelosi, 2020). 

RA-CLV proponents attempt integration but rely 
on linear subtraction, ignoring the correlation 
between high usage and high risk (the “Risky 
Whale”) (Singh et al., 2024). 

This study addresses these gaps by proposing a 
Multi-Layered Stacked Architecture. Unlike prior 
studies that assume a fixed relationship between risk 
and revenue (CLV=R-L), our approach utilizes a 

meta-learner to empirically discover the optimal 
weighting of these components, thereby capturing 
the non-linear dynamics of value and risk in retail 
banking. 

3. OBJECTIVE OF THE STUDY 

To propose a Multi-Layered Stacked 
Generalization Architecture that replaces the "linear 
subtraction" paradigm in Risk-Adjusted CLV 
modeling by empirically capturing non-linear 
interactions between revenue and credit risk. This 
framework aims to correctly identify high-risk "Risky 
Whale" customers and optimize retention strategies 
by learning the true exchange rate between customer 
value and default probability. 

4. METHODOLOGY 

This study proposes a novel, multi-layered 
structural architecture for estimating Risk-Adjusted 
Customer Lifetime Value (RA-CLV). Unlike 
traditional models that predict CLV as a monolithic 
scalar, our approach decomposes the problem into 
three distinct stochastic layers: Risk, Revenue, and 
Synthesis. This allows for the capture of non-linear 
interaction effects between a customer’s risk profile 
and their revenue-generating potential. 

4.1. Architectural Framework 

We define the theoretical Risk-Adjusted CLV for a 
customer i as the net present value of expected future 
cash flows, explicitly accounting for credit risk losses. 
The structural equation is defined as: 

RA-CLV𝑖 = 𝔼[Revenue𝑖] − 𝔼[Loss𝑖] − Cost𝑖  
Where * 𝔼[Revenue𝑖] is the expected revenue 

generated from interest and fees over the prediction 
horizon. * 𝔼[Loss𝑖] is the expected credit loss, defined 
as the product of the Probability of Default (PD) and 
the Loss Given Default (LGD). * Cost𝑖  is the known 
deterministic cost to serve the customer. 

Standard approaches often model these 
components independently and subtract them 
linearly. We hypothesize that this linear assumption 
fails to capture latent interactions—for example, 
high-risk customers often generate 
disproportionately high revenue prior to default 
(“Risky Whales”). To address this, we implement a 
Stacked Generalization Architecture consisting of 
three layers 

1. Layer 1 (Risk Layer) Estimates the probability 
and severity of default. 

2. Layer 2 (Revenue Layer) Estimates revenue 
potential, conditionally stacked on risk 
estimates. 

3. Layer 3 (Meta-Synthesis Layer) A meta-
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learner that discovers the optimal weighting 
parameters for combining risk and revenue 
into a final value score. 

4.2. Data Source and Preprocessing 

The dataset utilized in this study comprises de-
identified longitudinal transaction records 
aggregated from multiple banking institutions over a 
six-year period (2018–2023). The data captures the 
complete financial lifecycle of 𝑁 = 5,000 retail 
banking customers, including deposit history, 
transaction velocity, and major life events (e.g., 
mortgages, investments). 

4.2.1. Temporal Alignment and Leakage Prevention 

A critical methodological challenge in CLV 
modeling is “look-ahead bias” (temporal leakage), 
where future information inadvertently informs 
predictions. To ensure rigorous temporal validity, we 
applied a strict Observation vs. Prediction Window 
split: 

1. Feature Space (𝑿) Features were engineered 
using only data available at the time of 
customer acquisition (e.g., credit_score_initial, 
income_at_signup) or behavioral aggregates 
strictly limited to the first observation window 
(𝑡𝑜𝑏𝑠). 

2. Target Space (𝒚) Target variables (Revenue, 
Default Events) were calculated over a fixed 3-
year horizon (𝑡𝑜𝑏𝑠 to 𝑡3𝑦). 

Specifically, features derived directly from the 
target variable’s calculation logic (e.g., 
average_balance_3y, total_fees_3y which 
mathematically determines interest revenue) were 
rigorously excluded from the feature set 𝑋 to prevent 
circular prediction. 

4.2.2. Event Decoupling 

To model realistic credit risk sparsity, default 
events were analyzed independently of specific 
product ownership. A “Default” event (𝐷 = 1) 
represents a generalized catastrophic credit failure 
(e.g., charge-off), triggered by a latent risk propensity 
rather than a specific missed payment. This resulted 
in a realistic class imbalance, with a default rate of 
approximately 45.6% within the high-risk sub-
segments. 

Data preprocessing included standard scaling 

(𝑧 =
𝑥−𝜇

𝜎
) for numerical features and One-Hot 

Encoding for categorical segments. 

4.3. Layer 1: The Risk Model (Expected Loss) 

The objective of Layer 1 is to estimate the 
Expected Loss (𝔼[𝐿]), decomposed as: 

𝔼[𝐿𝑖] = 𝑃(𝐷𝑖 = 1|𝑋𝑖) × 𝔼[Severity
𝑖
|𝐷𝑖 = 1] 

4.3.1. Probability of Default (PD) 

We modeled the binary default event 𝐷𝑖  using a 
Logistic Regression classifier. This choice was 
prioritized over “black-box” ensembles for this layer 

to ensure calibrated probability estimates 𝑃̂(𝐷𝑖), 
which serve as interpretable inputs for subsequent 
layers. The model minimizes the Log-Loss function: 

ℒlog = −
1

𝑁
∑[𝑦𝑖log(𝑝̂𝑖) + (1 − 𝑦𝑖)log(1 − 𝑝̂𝑖)]

𝑁

𝑖=1

 

where 𝑦𝑖 ∈ {0,1} indicates a default event. To 
handle class imbalance, we applied inverse class 
weighting. 

4.3.2. Loss Given Default (LGD) 

Modeling the severity of loss (LGD) presents 
significant challenges due to the stochastic nature of 
default magnitude. Initial exploratory modeling 
utilizing Gamma Regressors and Gradient Boosting 
Regressors yielded coefficients of determination 
𝑅2 < 0. This empirical finding suggests that while the 
event of default is predictable based on customer 
attributes, the magnitude of the loss in this dataset 
behaves as a stochastic process dominated by 
exogenous factors. 

Consequently, to maintain theoretical robustness, 
we adopted a Mean-Loss Estimator: 

LGD̂𝑖 =
1

|𝐷train|
∑ Loss𝑗

𝑗∈𝐷train

 

Thus, the final output of Layer 1 for customer 𝑖 is 

the predicted expected loss: 𝐸̂[𝐿]𝑖 = 𝑃̂(𝐷𝑖) × LGD̂. 

4.4. Layer 2: The Revenue Model (Stacked) 

Layer 2 estimates the total 3-year revenue (𝔼[𝑅]) 
generated from interest and fee income. We 
employed a Gradient Boosting Regressor (GBR) 
optimized with the Huber Loss function to provide 
robustness against high-value outliers (“whales”). 

4.4.1. Stacked Feature Architecture 

A key methodological contribution of this study is 
the introduction of Risk Stacking. We hypothesize 
that a customer’s risk profile contains latent 
information about their revenue behavior. To capture 

this, the predicted probability of default 𝑃̂(𝐷𝑖) from 
Layer 1 is injected as a feature into the sanitized input 
space of Layer 2. To ensure strict temporal validity, 
features mathematically coupled to the target (e.g., 
average_balance_3y) were pruned from 𝑋𝑖 prior to 
stacking. The augmented feature vector is defined as 

𝑋′𝑖 = 𝑋𝑖,𝑐𝑙𝑒𝑎𝑛 ∪ {𝑃̂(𝐷𝑖)} 
Where, input 𝑋𝑖,𝑐𝑙𝑒𝑎𝑛  is the subset of features 
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excluding the leaky variables. 

𝑅̂𝑖 = 𝑓GBR(𝑋′𝑖) 
This allows the non-linear GBR model to learn 

interaction effects, particularly the propensity for 
high-risk customers to generate higher transaction 
fees prior to default. 

4.5. Layer 3: Synthesis via Meta-Learning 

The final layer synthesizes the component 
predictions into a single Risk-Adjusted CLV score. 
Rather than assuming a fixed linear subtraction 
(Equation 1), we treat the combination as a learnable 
task. We define the stochastic target 𝑦′ as the net 
value excluding fixed costs: 

𝑦′𝑖 = Revenue𝑖 − Loss𝑖  
We train a Huber Regressor meta-learner to map 

the component predictions to this net target: 

𝑦̂′𝑖 = 𝛽0 + 𝛽1𝑅̂𝑖 + 𝛽2𝐸̂[𝐿]𝑖 + 𝜖 
This approach allows the model to empirically 

discover the “exchange rate” between risk and 
revenue. If 𝛽1 > 1, it suggests revenue features have 
compounding positive effects; if 𝛽2 < −1, it suggests 
risk is penalized more heavily than a direct dollar-
for-dollar subtraction. 

The final Risk-Adjusted CLV is calculated by 
subtracting the known deterministic cost from the 
meta-prediction: 

RA-CLV̂
𝑖 = 𝑦̂′𝑖 − Cost𝑖  

4.6. Experimental Design 

The model was validated using a stratified 80/20 
train-test split, preserving the ratio of default events. 
To prevent data leakage during the stacking process, 
the meta-learner (Layer 3) was trained using Out-of-

Fold (OOF) predictions generated via 5-fold cross-
validation on the training set. Final performance was 
evaluated on the held-out test set using Coefficient of 
Determination (𝑅2) and Mean Absolute Error (MAE). 

5. RESULTS AND EMPIRICAL ANALYSIS 

This section presents the evaluation of the 
proposed Multi-Layered Risk-Adjusted CLV (RA-
CLV) architecture. We analyze the distributional 
properties of the target variables, evaluate the 
predictive performance of the decoupled Risk and 
Revenue layers, and interpret the synthesis 
parameters learned by the Layer 3 Meta-Model. 
Finally, we demonstrate the strategic utility of the 
model through a risk-value segmentation analysis. 

5.1. Exploratory Analysis and Feature Dynamics 

The financial target variables exhibit significant 
non-normality, necessitating the use of robust 
regression techniques. As illustrated in Figure 1, the 
3-Year Total Revenue (Target

1
) is right-skewed, 

consistent with the Pareto principle in retail banking 
where a minority of customers generate the majority 
of fee and interest income. 

 
Figure 1: Distribution of 3-Year Total Revenue (Target 1: Revenue). 

Conversely, the distribution of Default Losses (〖

"Target" 〗_2), conditional on the event of default, 

approximates a normal distribution but with high 
variance (Figure 2). The absence of a distinct “long 
tail” in losses suggests that while the probability of 
default is highly variable, the magnitude of loss is 
centralized around a mean of approximately $14,000. 

To assess feature independence, we examined the 
correlation matrix of the 3-year aligned features 
(Figure 3). Moderate multicollinearity was observed 
between income_at_signup and initial_deposit (𝑟 =
0.78). However, the correlation between the 
engineered behavioral features (e.g., 
num_transactions_3y) and traditional credit bureau 
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data (credit_score_initial) was low (𝑟 < 0.50), 
supporting the hypothesis that behavioral data 

provides orthogonal predictive signals. 

 
Figure 2: Distribution of Default Losses (Target 2: LGD). 

 
Figure 3: Correlation Heatmap of 3Y-Aligned Numerical Input Features. 

5.2. Layer 1: Performance: Risk Decomposition 

The Risk Layer decomposed the expected loss into 
the Probability of Default (PD) and Loss Given 
Default (LGD). 

5.2.1. Probability of Default (PD) 

The Logistic Regression classifier demonstrated 

exceptional discriminative power in identifying 
future defaults. The model achieved a Receiver 
Operating Characteristic Area Under the Curve 
(ROC-AUC) of 0.9529 (Figure 4). 

Table 1 presents the detailed classification metrics. 
Notably, the model achieved a recall of 0.85 for the 
“True” default class, indicating it successfully 
identified 85% of actual defaulters—a critical 
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threshold for risk mitigation. 

Table 1: PD Model Classification Report (Test Set). 
Class Precision Recall F1-Score Support 

Non-Default (0) 0.88 0.91 0.89 54 

Default (1) 0.89 0.85 0.87 46 

Weighted Avg 0.88 0.88 0.88 100 

 
Figure 4: PD Model - ROC Curve. 

5.2.2. Loss Given Default (LGD): The Stochasticity 
Finding 

A significant empirical finding of this study is the 
inherent unpredictability of loss magnitude using 
acquisition-stage features. We evaluated two distinct 

regressors for LGD: a Gamma Regressor (linear) and 
a Gradient Boosting Regressor (non-linear). As 
shown in Table 2, both models yielded negative R^2 
values on the test set, indicating they failed to 
outperform a simple horizontal line. 

Table 2: LGD Model Performance Comparison. 
Model Architecture Test RMSE Test 𝑹𝟐 Interpretation 

Gamma Regressor $4,173.21 -0.0173 Failed to generalize. 

Gradient Boosting $5,010.65 -0.4666 Severe overfitting; no signal found. 

The visualization of Predicted vs. Actual Loss for 
both Model 1b (Figure 5) and Model 1b v2 (Figure 6) 
confirms that the loss amount acts as a stochastic 
process dominated by random variance rather than 
feature-driven patterns. 

Methodological Decision Consequently, we 

rejected the complex regressors and adopted the 
Mean-LGD approach (μLGD=$14,023.91) for the final 
pipeline. This preserves theoretical robustness by 
acknowledging the epistemic uncertainty of the 
severity component. 

 
Figure 5: LGD Model: Actual vs. Predicted Loss. 
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Figure 6: LGD Model (v2): Actual vs. Predicted Loss. 

5.3. Layer 2 Performance: Revenue Estimation 

The Revenue Model (Gradient Boosting 
Regressor) utilized the stacked architecture, 

incorporating the predicted_pd from Layer 1 as a 
latent feature. This model achieved strong predictive 
performance with an R2 of 0.8878 and a Root Mean 
Squared Error (RMSE) of $378.84. 

 
Figure 7: Revenue Model (v2 - Fixed): Actual vs. Predicted Revenue. 

Feature Importance Analysis A key validation of 
our stacked architecture is the contribution of the risk 
score to the revenue model. As detailed in Table 3 
and visualized in Figure 8, predicted_pd contributed 
approximately 2.67% to the model’s information 

gain, ranking as the 5th most important feature. This 
empirically confirms that a customer’s risk profile 
contains non-redundant information regarding their 
revenue generation potential. 

Table 3: Top 5 Feature Importance - Revenue Model. 
Rank Feature Importance Score 

1 total_deposits_3y 0.6891 

2 segment_Retired 0.1422 

3 initial_deposit 0.0801 

4 total_withdrawals_3y 0.0415 

5 
predicted_pd  

(Stacked) 
0.0267 
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Figure 8: Revenue Model (v2) Feature Importance (Stacked Model). 

5.4. Layer 3: Meta-Learned Synthesis 

The Meta-Learner (Huber Regressor) synthesized 
the component predictions to generate the final Risk-
Adjusted CLV. Rather than a manual linear 
subtraction, the model learned the optimal weighting 
of Revenue and Loss. The learned relationship is 
defined as: 

RA-CLV ≈ 1.768 × 𝔼[Revenue] − 0.964 × 𝔼[Loss] − Cost 

Interpretation of Coefficients 
1. Revenue Multiplier (𝛽𝑟𝑒𝑣 = 1.768): The model 

weights predicted revenue significantly higher 
than a 1:1 ratio. This suggests that high-
revenue customers possess latent value (e.g., 

retention probability) that the component 
revenue model under-represents. 

2. Loss Parity (𝛽𝑙𝑜𝑠𝑠 = −0.964): The coefficient for 
expected loss is near unity (−1.0). This 
validates the economic reality that a dollar lost 
in default is effectively a dollar removed from 
bottom-line value. 

The final pipeline achieved a test-set 𝑅2 of 0.5532 
(Figure 9). While lower than the intermediate 
revenue model, this represents a robust result for a 
composite net-value metric that aggregates the 
uncertainties of both risk and revenue layers. 

 
Figure 9: Final RA-CLV Model: Actual vs. Predicted CLV. 

5.5. Strategic Customer Segmentation 

The ultimate utility of the RA-CLV model lies in 

its ability to segment customers based on the 
interplay of Value and Risk. Figure 10 visualizes the 
test set mapped onto the Risk-Revenue plane, 
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revealing four distinct strategic clusters. 

 
Figure 10: Q1 Final Segmentation: Value vs. Risk. 

Table 4 summarizes the financial profiles of these identified segments based on the test set predictions. 

Table 4: Strategic Customer Segments and Financial Profiles. 

Segment Label 
Avg. Predicted 

Revenue 
Avg. Predicted 
Expected Loss 

Avg. RA-CLV Strategic Action 

1 
Star 

Customers 
$1,521.00 $1,850.68 $754.11 

Retain: High priority for loyalty programs and cross-
sell. 

2 
Risky 

Whales 
$1,283.75 $10,502.72 -$8,009.56 

Monitor/Divest: High revenue masks massive 
downside risk. Limit credit exposure. 

3 Safe Bets $515.04 $2,520.65 -$1,670.44 
Nurture: Low risk but low value. Upsell to increase 

wallet share. 

4 Lost Causes $315.85 $11,545.31 -$10,726.20 
Avoid: High risk and low value. Passive churn 

management recommended. 

The “Risky Whales” segment (labeled as Segment 
2) is of particular interest. Traditional revenue-only 
models would likely misclassify these customers as 
high-value due to their substantial transaction fees 
($1,283 avg). 

However, our RA-CLV model correctly identifies 
that their expected loss ($10,502) vastly outweighs 
their revenue, resulting in a deeply negative lifetime 
value. This distinction highlights the necessity of the 
risk-adjusted approach for sustainable portfolio 
management. 

6. DISCUSSION 

The empirical results of this study challenge the 
prevailing “linear subtraction” paradigm in 
Customer Lifetime Value modeling. By 
implementing a Multi-Layered Stacked Architecture, 
we demonstrated that the relationship between 
revenue generation and credit risk is neither 
independent nor linear. 

This section interprets the stochastic nature of loss 
severity, explains the latent value signals captured by 
the meta-learner, and discusses the strategic 

imperatives of the “Risky Whale” phenomenon. 

6.1. The Stochasticity of LGD and the Limits of 
Feature Determinism 

A critical finding of Layer 1 was the stark contrast 
in predictability between the event of default (PD) 
and the severity of loss (LGD). While the PD model 
achieved high discrimination (ROC-AUC 0.9529), the 
LGD models failed to generalize, yielding negative 
𝑅2 values (Table 3). 

This dichotomy validates the theoretical concerns 
raised by Jacobs (2024) and Orlando & Pelosi (2020) 
regarding the stochastic nature of recovery rates. Our 
results suggest that while a customer’s propensity to 
default is endogenous—driven by observable traits 
like credit_score_initial and behavioral velocity—the 
magnitude of the resulting loss is likely exogenous. It 
is governed by unobserved factors such as specific 
collateral liquidation timing, legal recovery friction, 
or macroeconomic shocks (Basson et al., 2025). 

Methodologically, this justifies the rejection of 
complex regressors for LGD in favor of a robust 
Mean-Estimator. Attempting to force a signal from 
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noise in LGD modeling does not improve accuracy; 
it merely introduces variance. Future RA-CLV 
frameworks should prioritize precision in PD 
estimation while accepting the epistemic uncertainty 
inherent in loss severity. 

6.2. The Empirical “Exchange Rate” of Risk and 
Revenue 

The Layer 3 Meta-Learner provided the most 
novel theoretical contribution by empirically 
deriving the “exchange rate” between revenue and 
risk. Contrary to the standard accounting 
assumption that 𝐶𝐿𝑉 = 𝑅 − 𝐿 (implying coefficients 
of 1.0 and −1.0), our meta-model learned a 
relationship of: 

Value ≈ 1.768 × Revenue − 0.964 × Loss 
The Revenue Multiplier (𝜷𝒓𝒆𝒗 ≈ 𝟏. 𝟕𝟕) The finding 

that the revenue coefficient significantly exceeds unity 
suggests that predicted revenue serves as a proxy for 
latent positive factors not explicitly captured in the 
dataset. High-revenue customers likely possess higher 
retention rates, greater cross-sell elasticity, or positive 
network effects (referrals). By uncoupling the 
components, the stacked architecture allowed the 
model to “reward” high-revenue behavior more 
aggressively than a linear accounting model would 
permit. 

The Loss Parity (𝛽𝑙𝑜𝑠𝑠 ≈ −0.96) Conversely, the 
loss coefficient is near unitary. This confirms that 
credit losses are “hard” costs. Unlike revenue, which 
may signal future growth, a dollar lost in default has 
no latent upside; it is a direct subtraction from firm 
equity. This asymmetry—where revenue signals 
opportunity but loss signals finalized destruction—
supports the move away from symmetric linear 
models (Singh et al., 2024). 

6.3. Deconstructing the “Risky Whale” Paradox 

The segmentation analysis (Figure 10) explicitly 
confirms the “Risky Whale” hypothesis proposed in 
our Literature Review. Segment 2 (Risky Whales) 
generated substantial predicted revenue ($1,283), 
comparable to Segment 1 (Star Customers, $1,521). 
Under traditional RFM models (Megantara et al., 
2023), these two segments would be clustered 
together as “High Value.” 

However, the RA-CLV model reveals that 
Segment 2 carries an expected loss ($10,502) nearly 
six times that of Segment 1. This finding empirically 
bridges the silo between marketing and risk (Hunt & 
Taplin, 2019). It demonstrates that transaction 
velocity—often celebrated in marketing as 
“engagement”—can simultaneously function as a 
leading indicator of financial distress or aggressive 

leveraging (Flanagan, 2025). 
The strategic implication is profound: Firms using 

revenue-only CLV models are likely over-allocating 
retention budgets to Risky Whales, effectively 
subsidizing their own future losses. The RA-CLV 
framework provides the necessary signal to decouple 
these segments, prescribing “Retention” for Segment 
1 and “Exposure Limiting” for Segment 2. 

6.4. The Value of Risk Stacking 

Finally, the performance of Layer 2 (Revenue 
Model) validates the “Risk Stacking” methodology. 
The inclusion of predicted_pd as a feature improved 
the revenue model’s ability to explain variance (Table 
4). This suggests that a customer’s creditworthiness 
contains information about their spending capacity 
that is not redundant with income or deposit history. 
This reciprocal causality—where risk informs 
revenue prediction and revenue informs risk 
stratification—supports the use of Stacked 
Generalization as the superior architectural choice 
for financial customer modeling (Simsek, 2024; Chen 
et al., 2021). 

6.5. Limitations and Future Research 

This study acknowledges specific limitations. 
First, the use of a Mean-LGD estimator, while 
statistically valid for this dataset, limits the model’s 
granularity at the extreme tail of loss severity. Future 
research should explore “Two-Stage Hurdle Models” 
that predict the probability of zero-recovery separate 
from the loss amount. Second, the dataset reflects a 
specific 6-year economic cycle; the stability of the 
meta-learner’s coefficients (𝛽𝑟𝑒𝑣 , 𝛽𝑙𝑜𝑠𝑠) during a 
severe recession remains to be tested. Finally, while 
we decoupled the components, we did not model the 
timing of default explicitly. Integrating Survival 
Analysis (Cox Proportional Hazards) into the Layer 
1 Risk Model could further refine the temporal 
precision of the RA-CLV calculation. 

7. CONCLUSION 

The integration of credit risk into Customer 
Lifetime Value modeling has long been hindered by 
methodological silos that treat revenue generation 
and default probability as orthogonal dimensions. 
This study dismantles the prevailing “linear 
subtraction” paradigm (𝐶𝐿𝑉 = 𝑅 − 𝐿) by 
demonstrating that the relationship between a 
customer’s value and their risk is inherently non-
linear, interactive, and asymmetric. Through the 
implementation of a novel Multi-Layered Stacked 
Generalization Architecture, we have provided 
empirical evidence that high transaction velocity—
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traditionally viewed as a proxy for engagement—can 
simultaneously serve as a leading indicator of 
financial distress, a phenomenon we formalized as 
the “Risky Whale” paradox. 

Three principal conclusions emerge from this 
research. First, the intractability of Loss Given 
Default (LGD) prediction using standard regressors 
confirms that while the propensity to default is a 
feature-driven behavioral trait, the severity of loss is 
largely stochastic. This finding advocates for a shift 
in modeling priorities: rather than pursuing spurious 
precision in LGD estimation, institutions should 
focus on robust Probability of Default (PD) 
discrimination and the correct structural synthesis of 
risk components. 

Second, our Meta-Learner empirically derived a 
value exchange rate that fundamentally alters the 
accounting logic of CLV. The finding that predicted 
revenue acts as a multiplier (𝛽 ≈ 1.77) while 

expected loss acts as a unitary deduction (𝛽 ≈ −0.96) 
challenges the symmetric treatment of these 
variables. It suggests that “safe” revenue has 
compounding latent benefits (retention, cross-sell), 
whereas credit losses are terminal events with no 
upside potential. 

Finally, the strategic segmentation resulting from 
this architecture provides a necessary corrective to 
revenue-centric marketing. By distinguishing “Star 
Customers” (high revenue, low risk) from “Risky 
Whales” (high revenue, high risk), the model exposes 
the hidden capital costs of indiscriminate retention 
strategies. For retail banks, the adoption of this Risk-
Adjusted Stacked Architecture is not merely a 
technical refinement; it is a strategic imperative for 
ensuring that marketing budgets drive sustainable 
equity growth rather than subsidizing future 
insolvencies. 
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