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ABSTRACT

Traditional monolithic systems struggle against the dynamic nature of financial fraud and other transactional
risks. This paper introduces the Intelligent Credit Sentinel, a novel four-layered hierarchical architecture
designed for robust and multi-faceted transaction risk assessment. The system employs an unsupervised
autoencoder for broad anomaly detection (Layer 1), two specialized supervised XGBoost classifiers for
targeted fraud and billing error detection (Layers 2 & 3), and a final logistic regression meta-learner to
synthesize these outputs into a single, actionable risk score (Layer 4). Through extensive feature engineering
and hyperparameter tuning to manage severe class imbalance, the specialist layers achieved high performance,
with the final billing error model attaining 94% precision. The synergistic combination of these layers in the
meta-learner resulted in a final system-wide recall of 82.4% for all high-risk events. The findings demonstrate
that this modular, tiered approach is a highly effective, interpretable, and operationally efficient paradigm for
modern financial security.

KEYWORDS: Fraud Detection, Multi-Layered Architecture, Meta-Learner, Anomaly Detection, XGBoost,
Class Imbalance.
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1. INTRODUCTION

In the ever-expanding landscape of digital
finance, the integrity of electronic transactions is
paramount (Goldstein & Uchida, 2016; Nata et al.,
2025). Yet, with each technological advance that
simplifies commerce, a shadow-self emerges in the
form of increasingly sophisticated financial fraud
(Mienye& Sun, 2023; Credit card fraud, in
particular, represents a multi-billion dollar challenge,
evolving from simple theft to complex schemes that
exploit both technical vulnerabilities and human
behavior (Mienyeé& Sun, 2023; (Niu et al., 2019).

Traditional fraud detection systems, often relying
on monolithic models, have been shown in the
literature to struggle with this dynamic threat (Niu et
al., 2019; (Jeyaraj et al., 2024). While these systems can
be effective at identifying known fraud patterns,
research indicates they often fall short when faced
with novel attack vectors or entirely different classes
of transactional issues (Niu et al., 2019; (Jeyaraj et al.,
2024). Intricate billing errors, for example, represent
a separate class of problem that can erode consumer
trust and incur significant operational costs, yet are
not the primary target of traditional fraud-focused
models ("Machine Learning for Identifying Fraud in
Credit Card Transactions", 2024).

This paper addresses the critical need for a more
resilient and multi-faceted approach to transaction
security (Jeyaraj et al., 2024). We posit that to address
these documented limitations, a single, all-
encompassing model is no longer sufficient (Niu et
al., 2019; (Jeyaraj et al., 2024). Instead, we propose a
hierarchical system of specialized "experts," each
trained for a specific task, to provide a more robust
and intelligent defense (Jeyaraj et al., 2024)(Rihan et
al., 2023). To this end, we introduce the Intelligent
Credit Sentinel, a novel four-layered architecture
designed to dissect and analyze transaction risk from
multiple perspectives (Rihan et al., 2023).

The proposed system begins with a broad,
unsupervised Layer 1, an autoencoder-based
anomaly screener that acts as a vigilant gatekeeper,
identifying any transaction that deviates from the
norm without prior knowledge of specific threats
(Goldstein & Uchida, 2016; Nata et al., 2025). This is
followed by two parallel, supervised specialist
models: a Layer 2 XGBoost classifier, meticulously
trained to identify the complex signatures of known
fraudulent activities (Jeyaraj et al., 2024), and a
highly-tuned Layer 3 XGBoost model, designed to
detect the more subtle and ambiguous patterns of
billing errors ("Machine Learning for Identifying
Fraud in Credit Card Transactions", 2024). The
intelligence of these disparate layers is then

synthesized by a Layer 4 meta-learner, a final
decision engine that weighs the evidence from each
expert to produce a single, actionable risk assessment
(Rihan et al., 2023).

This paper details the design, implementation,
and rigorous evaluation of each layer of the
Intelligent Credit Sentinel. The methodology and
results for the unsupervised anomaly detector are
presented, followed by the development and
performance of the supervised classifiers for fraud
and billing errors (Jeyaraj et al., 2024). Finally, the
paper describes the meta-learner and evaluates the
performance of the system as a whole (Rihan et al.,
2023). Through this multi-layered approach, we
demonstrate a system that is not only highly accurate
but also interpretable and operationally efficient (- et
al., 2025), offering a more comprehensive paradigm
for modern transaction security (Jeyaraj et al., 2024).

2. LITERATURE REVIEW

Traditional fraud detection, which relies on static,
manually-defined rules (Malik et al., 2022), struggles
with significant limitations. These systems are
inherently reactive rather than proactive, lack
flexibility, and are time-consuming to maintain
(Malik et al., 2022). Rule-based approaches employ
binary features that flag transactions based on
predetermined thresholds, such as geographic
anomalies (Boulieris et al., 2023), yet these static rules
are easily circumvented by evolving fraud
techniques (Pk, 2023). In contrast, machine learning
(ML) models represent a fundamental shift, enabling
systems to adaptively learn complex patterns from
large datasets (Pk, 2023). ML algorithms can
efficiently analyze massive transaction volumes to
identify nuanced patterns that conventional
techniques overlook (Pk, 2023). Deep learning and
advanced ML architectures, in particular, provide
superior performance by automatically discovering
discriminative features and adapting to emerging
fraud schemes (Alarfaj et al., 2022). This transition
from static, expert-defined rules to data-driven,
adaptive ML models addresses the core weaknesses
of traditional systems, offering a proactive and
scalable solution for detecting sophisticated,
evolving fraudulent activities (Malik et al., 2022).

Unsupervised learning approaches, particularly
autoencoders, have emerged as powerful tools for
anomaly detection in financial systems without
requiring labeled fraud data (Jiang et al., 2023).
Autoencoders learn to reconstruct normal
transaction patterns by minimizing reconstruction
error, enabling them to identify significant deviations
from this learned normality as anomalies (Jiang et al.,
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2023; Wu & Wang, 2021). This unsupervised
paradigm is valuable because it circumvents the
challenge of obtaining comprehensive labeled
datasets and can adapt to unknown attack patterns
(Jiang et al., 2023). Hybrid architectures combining
autoencoders with generative adversarial networks
(GANs) may further enhance these detection
capabilities (Wu & Wang, 2021). In the financial
domain, unsupervised autoencoders serve as an
effective first line of defense, flagging generally
abnormal transactions for subsequent analysis (Wu
& Wang, 2021). By treating fraudulent transactions as
anomalous deviations, these models can identify
suspicious activities without prior knowledge of
specific fraud schemes (Jiang et al., 2023). This
addresses critical limitations of purely supervised
methods, offering a scalable, adaptive solution for
detecting novel fraudulent patterns (Jiang et al., 2023;
Wu & Wang, 2021).

In parallel, supervised learning models like
XGBoost and Random Forests have demonstrated
effective performance in credit card fraud detection
by leveraging labeled data to learn specific fraud
patterns (Niu et al., 2019). These ensemble methods
excel at capturing the complex, non-linear
relationships between transaction features and
predefined risk categories (Niu et al.,, 2019). Both
XGBoost and Random Forests achieve high accuracy
through their ability to iteratively refine predictions
and handle feature interactions that simpler models
may overlook (Niu et al., 2019). Comparative studies
indicate that supervised models generally
outperform  unsupervised approaches when
sufficient labeled data is available, as they are
directly optimized to distinguish between normal
and abnormal transactions (Niu et al., 2019). The
strength of these methods lies in their capacity to
learn patterns specific to known fraud types,
enabling precise classification (Niu et al., 2019).
However, this strength is also their primary
limitation, as they require substantial labeled
datasets and may fail to identify novel, previously
unseen fraud schemes (Niu et al., 2019). In multi-
layered frameworks, these classifiers can thus
function as specialized secondary layers, building
upon an initial anomaly detection phase to provide
targeted, high-confidence identification of specific,
predefined risks (Niu et al., 2019).

A critical challenge in this domain is the severe
class imbalance inherent in financial datasets, where
fraudulent transactions constitute a small fraction of
total activity. This imbalance causes standard models
to exhibit a strong bias toward the majority
(legitimate) class (Youssef, 2025; Salekshahrezaee et

al., 2023). This bias degrades model performance,
particularly in detecting the minority fraud class,
which is the primary objective of the system
(Salekshahrezaee et al., 2023). The literature identifies
two complementary approaches to this problem:
data-level and  algorithm-level  techniques
(Salekshahrezaee et al., 2023). Data-level methods
modify the class distribution through random
undersampling of the majority class or oversampling
techniques such as SMOTE (Synthetic Minority
Oversampling Technique) and its variants (Youssef,
2025; Salekshahrezaee et al., 2023). Algorithm-level
approaches, by contrast, employ cost-sensitive
learning or class weighting strategies that apply a
higher penalty for misclassifying the minority fraud
class during model training (Salekshahrezaee et al.,
2023). Studies demonstrate that combining these
techniques with ensemble classifiers like XGBoost
significantly improves fraud detection performance
(Youssef, 2025; Hajek et al., 2022). By strategically
addressing class imbalance, robust systems can be
developed that effectively identify rare fraudulent
transactions (Youssef, 2025; Salekshahrezaee et al.,
2023).

To overcome the limitations of any single
approach, hybrid and meta-learning architectures
have emerged as a powerful paradigm for
synthesizing outputs from multiple specialist models
(Airlangga, 2024). Stacking ensemble techniques
combine diverse base learners—such as Random
Forest, XGBoost, and Support Vector Machines
(SVM) —through a meta-learner that optimally
integrates their predictions (Airlangga, 2024). This
"stacking" approach leverages the complementary
strengths of different algorithms: unsupervised
methods excel at detecting novel anomalies, while
supervised classifiers focus on identifying known
fraud patterns (Airlangga, 2024). The meta-learner,
often a simpler model like logistic regression, learns
to weigh the evidence from these base models to
produce a unified, superior risk score (Airlangga,
2024). Empirical studies demonstrate that stacked
ensembles can substantially improve fraud detection
accuracy by effectively mitigating individual model
weaknesses (Airlangga, 2024). By integrating
unsupervised anomaly detection with supervised
classifiers, these hybrid architectures create robust,
multi-layered defense systems capable of identifying
both known and unknown threats (Airlangga, 2024).

The existing literature, therefore, reveals a critical
gap. Research predominantly addresses either
general anomaly detection or singular, binary fraud
classification tasks (Airlangga, 2024). While many
studies employ ensemble methods and advanced
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algorithms, there is a lack of comprehensive
frameworks designed to simultaneously distinguish
between multiple distinct risk types—such as
targeted fraud versus billing errors — within a single,
unified system. Most research focuses on a binary
(fraud/legitimate) classification without addressing
the practical, operational need to differentiate
between specific, actionable risk categories (Héjek et
al., 2022). Few studies propose multi-layered hybrid
architectures that combine unsupervised screening
with specialized supervised experts for distinct risk
types, all synthesized by a meta-learner. This paper's
proposed four-layer system fills this gap by
providing a comprehensive, operationally-aligned
framework that advances beyond existing single-
objective or general anomaly detection approaches.

3. OBJECTIVE OF THE STUDY

The primary objective of this paper is to design
and develop a multifaceted hierarchical model for
credit card fraud detection, recognizing that reliance
on a single detection method is insufficient in today’s
complex financial environment. The proposed
approach aims to integrate multiple detection
techniques within a layered framework to enhance
accuracy, reduce falsepositives and improve
adaptability against evolving fraud strategies.

4. METHODOLOGY
4.1. Variables

The multi-layered architecture of the system
necessitated a distinct set of variables for each
analytical stage, tailored to the specific objective of
each model. The features were engineered from core
transaction data, historical cardholder and merchant
profiles, and the outputs of preceding layers.

The primary input variables can be categorized as
follows

The multi-layered architecture of the system
necessitated a distinct set of variables for each
analytical stage, tailored to the specific objective of
each model. The features were engineered from core
transaction data, historical cardholder and merchant
profiles, and the outputs of preceding layers.

The primary input variables can be categorized
as follows

These features provide the fundamental context
of each transaction. They include the
Transaction_Amount_Local_Currency,
Merchant_Category_Code (MCQO),
Point_of Sale_Entry Mode, and boolean flags
indicating if the transaction was Is_Card_Present or an
Is_Cross_Border_Transaction. For Card-Not-Present
(CNP)  transactions, AVS_Response_Code  and

CVV_Match_Result were also incorporated.

Cardholder and Merchant Profiles To
contextualize the transaction within broader
patterns, variables representing the cardholder and
merchant were used. Cardholder features included
Credit_Limit, Reported_Fraud_History_Count,
Billing_Dispute_History_Count, and a pre-assigned
Persona_Type. Merchant attributes were represented
by Merchant_Risk_Level and
Historical_Billing_Dispute_Rate_Global.

Cardholder Historical Behavior Baselines To
establish a behavioral baseline for each cardholder,
several features were calculated based on their
historical ~activity. These included statistical
measures of their typical transaction amount
(CH_Avg_Amount, CH_Median_Amount,
CH_StdDev_Amount) and a Z-score
(CH_Transaction_Amount_ZScore) to normalize the
current transaction amount against their history.
Behavioral = frequency @ was  captured by
CH_Count_Transactions_per_Day and
CH_Frequency_MCC_Usage.

Engineered Temporal and Velocity Features
Time was a critical dimension, addressed through
several engineered features. The Transaction_Hour
was transformed into cyclical features (hour_sin,
hour_cos) to preserve the continuity of the 24-hour
cycle. Recency was captured via
Time_Since_CH_Last_Transaction_Overall_Min  and
Time_Since_CH_Last_Transaction_at_Same_Merchant_
Min. To model short-term spending velocity, a series
of features were calculated over rolling time
windows of 1, 6, 24, and 168 hours, including
transaction counts
(CH_Count_Transactions_Last_X_Hours), transaction
sums
(CH_Sum_Amount_Transactions_Last_X_Hours), and
the count of unique merchants
(CH_Count_Unique_Merchants_Last_X_Hours). The
Transaction_DayOfWeek was also included as a
categorical variable.

Inter-Layer Features The Layer 4 meta-learner
utilized the probabilistic outputs from the preceding
layers as its primary inputs. These variables were the
Layer1_Reconstruction_Error from the autoencoder,
the Layer2_Fraud_Probability from the fraud detection
model, and the Layer3_Billing_Error_Probability from
the billing anomaly detector. The original
Transaction_Amount_Local_Currency was also passed
to this final layer to provide context.

Target Variables The dependent variables for the
supervised models were Is_Fraud for the Layer 2
fraud estimator and Is_Billing_Error for the Layer 3
billing anomaly detector. A secondary model in
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Layer 3 also predicted the Billing Error_Type. The
Layer 4 meta-learner was trained on a composite
binary target, Meta_Target_High_Risk, which was
positive if a transaction was classified as either fraud
or a billing error.

Initial Preprocessing To ensure the model was
evaluated in a realistic scenario, the dataset was first
sorted chronologically by Timestamp. A time-based
80/20 train-test split was then performed, training the
models on the first 80% of the data and evaluating them
on the most recent 20%.

For use in each layer’s specific ColumnTransformer,
standardized preprocessing pipelines were created
based on the variable types.

Numerical Features Processed by first imputing
missing values with the median, followed by scaling
with StandardScaler.

Categorical Features: Processed by imputing missing
values with a constant 'Missing' string (treating non-
response as a distinct category) and then transforming
them using OneHotEncoder.

4.2. Layer 1: Unsupervised Anomaly Screening via
Deep Autoencoder

The first layer of the proposed Inteligent Credit
Sentinel system is an unsupervised anomaly screener
designed to identify transactions that deviate from
established patterns of normal behavior. For this task, we
employ a deep autoencoder, a neural network trained to
reconstruct its own input. The core principle is that a
model trained exclusively on legitimate transactions will
exhibit a significantly higher reconstruction error when
presented with an anomalous or fraudulent transaction
it has not seen before. This reconstruction error serves as
a valuable anomaly score.

Input Vector Representation Each transaction is
formally represented as a feature vector x € RP,
where D is the total number of raw features. This
vector is a concatenation of numerical and categorical
feature subsets, X = [X,um, Xcat]-

Based on the implemented feature selection, the

numerical  feature  vector, Xpum, includes
transactional attributes such as
Transaction_Amount_Local_Currency, cardholder

spending patterns like CH_Avg Amount and
CH_Transaction_Amount_ZScore, and cyclical time-
based features hour_sin and hour_cos. The categorical
feature vector, Xcats includes
Merchant_Category_Code, Point_of Sale_Entry_Mode,
and Persona_Type, among others.

Data Pre-processing Prior to model training, a
preprocessing function, denoted as @(-), is applied to
transform the raw input vector x into a scaled and
encoded vector x'. This function consists of two main

operations:

e Min-Max Scaling Applied to the numerical
features Xy, this operation scales each
feature to a range of [0,1].

¢ One-Hot Encoding Applied to the
categorical features X, this operation
converts each categorical variable into a
binary vector representation.

The resulting preprocessed vector, X' = ®(x), has
a dimensionality of d, where d corresponds to the
input_dim variable in the implementation.

Autoencoder Architecture The autoencoder
architecture consists of two primary components: an
encoder and a decoder.

The encoder, denoted by the function f, maps the
preprocessed input vector X' to a lower-dimensional
latent space representation z € R¥, where k < d. This
is formally expressed as:

z=f(x)

The encoder is composed of a series of L dense

layers, where the output of each layer i is given by:
h; = 6y (W;h;_; +b;) fori=1,..,L

Here, hy = x’, W; and b; are the weight matrix and
bias vector for layer i respectively, and o,y (a) =
max(0,a) is the Rectified Linear Unit (ReLU)
activation function. The latent vector is the output of
the final encoder layer, z = h;.

The decoder, denoted by the function g, mirrors
the encoder’s architecture. It attempts to reconstruct
the original input vector from the latent
representation z, producing a reconstructed vector &':

% =g@ =g(fx))

The decoder is composed of dense layers with
ReLU activations, culminating in a final output layer
with a sigmoid activation function, og,(a) = (1 +
e~ %), to ensure the output values are constrained to
the [0,1] range, matching the Min-Max scaled input.

Objective Function and Anomaly Score The
autoencoder is trained by minimizing an objective
(loss) function, £, which measures the dissimilarity
between the original and reconstructed vectors. We
employ the Mean Squared Error (MSE), defined as
the squared Euclidean norm (L,-norm) of the
difference vector. For a set of N normal training
samples {x';, ..., x'y}, the loss is:

1 N ! N 2
L@ =71 IXi=%il B
i=1

N
1
= NZ| Ix'; —g(f&x'D) |3

where 6 represents all trainable model parameters
(weights and biases).

After training on the normal transaction dataset
normal_train_df 11, the model’s parameters are fixed.
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For any new transaction, X, its anomaly score,
E(Xyew), is calculated as its reconstruction error:

E(xnew) = | |¢(Xnew) -9 (f(d)(xnew))) | |%
A transaction is flagged as an anomaly if its score
E exceeds a predetermined threshold, .

4.3. Layer 2: Supervised Fraud Likelihood Estimation

While the Layer 1 autoencoder serves as a general
anomaly screener, Layer 2 employs a supervised
learning approach to specifically model the complex,
non-linear patterns indicative of known fraudulent
activities. For this task, we utilize XGBoost, a highly
efficient and scalable implementation of Gradient
Boosting Decision Trees (GBDT), to produce a

probabilistic fraud likelihood score for each
transaction.
Model Formulation The XGBoost model

constructs an ensemble of K regression trees. The
final prediction for a given input feature vector x; is
the sum of the predictions from each individual tree,
passed through a logistic function to produce a
probability. Let f, represent the k-th tree in the
ensemble; the raw prediction score ¥; is given by:

K
i = Z fie X'9)
k=1

where Xx'; is the preprocessed feature vector for
transaction i, and K is the total number of trees,
corresponding to the n_estimators parameter. The
final fraud probability is then P(Fraud|x';) = a(9;),
where o (-) is the logistic function.

The trees are built in an additive manner. At each
iteration t, a new tree f; is trained to minimize the
overall objective function, which includes a loss term

and a regularization term:
n

£O =1 (590 + £iKD) + 2
i=1

Here, I(y;, ;) is the loss function measuring the
error between the true label y; € {0,1} and the
prediction ;. The regularization term, Q(f;),
penalizes the complexity of the newly added tree to
prevent overfitting.

Handling Class Imbalance The dataset exhibits a
severe class imbalance, with fraudulent transactions
(Is_Fraud = 1) representing a small minority of the
data. To address this, we introduce a weighting
mechanism directly into the loss function. A weight,
Wyos, is applied to the loss for all positive class
instances. This weight corresponds to the
scale_pos_weight  parameter in the XGBoost
implementation and is calculated as the ratio of the
number of negative class samples to positive class
samples:

count(y = 0)
PoS ™ count(y = 1)

The objective function is thus modified to place a
significantly higher penalty on misclassifying a
fraudulent transaction compared to a legitimate one.

Feature Space The feature vector x for Layer 2 is
more comprehensive than that of Layer 1. It
incorporates a wide range of variables from
layer2_numerical_features and
layer2_categorical_features. These include not only
transactional data but also features describing the
cardholder’s history (Reported_Fraud_History_Count),
merchant risk profiles (Historical_Fraud_Rate_Global),
real-time velocity checks
(CH_Count_Transactions_Last_1H), and  explicit
transaction verification results (AVS_Response_Code,
CVV_Match_Result). Crucially, the anomaly score
Layer1_Reconstruction_Error from the first layer is also
included as a feature, allowing this supervised model
to leverage the insights from the unsupervised
screener. All features are preprocessed using the
preprocessor_I2 pipeline, which applies StandardScaler
to numerical features and OneHotEncoder to
categorical ones.

4.4. Layer 3: Billing Anomaly Detection and
Classification

The third layer of the system is a specialized two-
stage component designed to identify and categorize
specific types of non-fraudulent, high-risk events,
namely Dbilling errors. This layer operates
independently of the fraud detector to capture
distinct patterns associated with operational
discrepancies.

Billing Error Detection with XGBoost The first
stage employs a supervised binary classifier to
determine the probability that a given transaction is
a billing error. The model selected for this task is
XGBoost.

Model Formulation The XGBoost model
constructs an ensemble of K decision trees, where K
is the mn_estimators parameter. The final raw
prediction score ¥; for a preprocessed input vector X';
is the sum of the scores from each individual tree, f;:

K
5i= ) fe D
k=1

The model is trained in an additive fashion, where
each new tree f; is trained to minimize the objective
function, which balances a loss term and a
regularization term (2 to control model complexity:

n

£O =" 139 + £xD) + 0(£)

i=1
where [(y;,¥;) is the logistic loss function for
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binary classification.

Handling Class Imbalance To address the severe
class imbalance of billing errors, a weighting
parameter W, (scale_pos_weight) is incorporated into
the loss function. This applies a greater penalty for
misclassifying the minority (positive) class. Based on
an automated hyperparameter search, the optimal
value was determined to be:

W5 = 2.82

Billing Error Type Classification with Random
Forest For transactions flagged as billing errors by
the first stage, a second multi-class classifier is used
to categorize the specific Billing Error_Type. A
Random Forest model was implemented for this
purpose.

Model Formulation A Random Forest is an
ensemble of K individual decision trees. Each tree is
trained on a random bootstrap sample of the data.
The final prediction for a transaction x'; is
determined by a majority vote among all trees in the
forest. Let C be the set of possible error types (e.g.,
Duplicate_Charge, Unwanted_Subscription_Renewal).
The predicted class J; is the one that receives the most
votes:

K
91 = argmax ) 1(f(X) = ©)
cec =i

where f;,(x';) is the prediction of the k-th tree and
I(:) is the indicator function, which is 1 if the
condition is true and 0 otherwise.

Handling Class Imbalance To manage potential
imbalances between different error types, the
Random Forest is configured with
class_weight="balanced'. This setting automatically
assigns a weight w, to each class ¢ in the training
process, which is inversely proportional to its
frequency. The weight is calculated as:

Nsamples

w, =
Nelasses X Nsamples,c

where g mples 18 the total number of training
samples, Njusses 15 the number of distinct error types,
and Ngmples,c 1S the number of samples belonging to
class c¢. This ensures the model gives equal
importance to all error types, regardless of their
prevalence.

4.5. Layer 4 Meta-Learner for Final Risk Assessment

The final layer of the Inteligent Credit Sentinel
system is a decision and action engine, implemented
as a meta-learner. The purpose of this layer is to
synthesize the specialized outputs from the
preceding three layers into a single, unified
probability score that represents the overall risk of a
transaction. This final score is then used to

recommend concrete actions, such as approving,
reviewing, or declining a transaction.

Input Features and Unified Target The meta-
learner does not operate on the raw transaction data.
Instead, its feature space is constructed from the
outputs of the previous layers. The input feature
vector for the meta-learner, denoted as Xper, 1S
composed of:

e The anomaly score from Layer 1 (E(x),
Layer1_Reconstruction_Error).

e The fraud probability from Layer 2
(P(Fraud|x"), Layer2_Fraud_Probability).

e The billing error probability from Layer 3
(P(Billing Error|x’),
Layer3_Billing_Error_Probability).

e The original
Transaction_Amount_Local_Currency is also
included to provide context on the financial
magnitude of the event.

To train this model, a unified binary target
variable, yeta (Meta_Target_High_Risk), is created. A
transaction is considered a high-risk event (Ypeta = 1)
if it is either a confirmed fraud or a confirmed billing
error. Formally:

YVmeta = (yfraud = 1) \ (ybilling_error = 1)

Model Formulation A Logistic Regression model
is employed as the meta-learner due to its
interpretability and efficiency. The model learns a set
of coefficients, w, and a bias term, b, to map the input
features to a final risk probability. The probability of
a transaction being a high-risk event is modeled
using the logistic (sigmoid) function o (-):

P(ymeta = 1|X,meta)1: U(wa,meta + b)
- 1+ e—(WTX’meta"’b)

where X', .1, is the scaled meta-feature vector. The
learned coefficients in w directly correspond to the
importance the meta-learner places on the output of
each preceding layer when making its final decision.

Handling Class Imbalance The unified target
variable, Ypeta, is also imbalanced, as high-risk events
are rare. To counteract this, the Logistic Regression
model is configured with class_weight="'balanced'.
This setting adjusts the loss function by applying a
weight, w,, to each class ¢ that is inversely
proportional to its frequency:

Nsamples

W, =
Nelasses X Nsamples,c

where Ngmples is the total number of samples,
Nasses 1S the number of classes (two in this case), and
Nsamples,c 18 the number of samples in class c. This
ensures that the model does not become biased
towards the majority “Not High Risk” class.
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5. RESULTS

5.1. Layer 1: Results of Unsupervised Anomaly
Screening

two distinct types of adverse events: actual fraud and
billing errors. The results, presented in Figure 1,
demonstrate the model’s effectiveness in identifying
transactions that deviate from normative patterns,

The performance of the Layer 1 autoencoder as a particularly those associated with fraudulent
broad-based anomaly screener was evaluated against activity.
Layear 1 Anomaly Detection Performance Analysis

Ve ACtunl Billew Eieor

C Reconstruction Smor for rus Kveots

Figure 1: Anomaly Detection Performance Analysis of Layer 1.

Figure 1A and 1B present the confusion matrices
for the model’s anomaly predictions against the
ground truth for fraud and billing errors,
respectively. When evaluated against actual fraud
(Figure 1A), the model successfully identified 88
fraudulent transactions (True Positives) while failing
to flag 136 (False Negatives). This corresponds to a
recall of approximately 39% for fraudulent events.
The model generated 38 False Positives by flagging
legitimate transactions as anomalous.

Conversely, the model was significantly less
effective at identifying billing errors (Figure 1B). It
correctly flagged only 9 such events while missing
180, indicating that the patterns characterizing billing
errors are less distinct from normal transactional
behavior and are not well-captured by the
autoencoder’s learned representation of “normality.”

Figure 1C provides a comparative visualization of
the reconstruction error distributions for true

fraudulent events versus true billing errors. A
distinct difference is observable: the median and
interquartile range of reconstruction errors for
fraudulent transactions are substantially higher than
those for billing errors. This result strongly indicates
that the autoencoder’s anomaly signal, quantified by
the reconstruction error E(x), is a more potent
indicator for fraud than for billing discrepancies. The
model correctly perceives fraudulent activities as
more significant deviations from the learned norm,
thereby assigning them higher anomaly scores.

Layer 1: Visualizing the Reconstruction Error
Distribution To visualize the separability of normal
and anomalous transactions, the distribution of the
autoencoder’s reconstruction error, E(x), was plotted
on both a linear and a logarithmic scale (Figure 2).
This comparison is critical due to the severe class
imbalance inherent in the dataset.

Comparing Linear vs. Logarithmic Scale for Error Distribution
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Figure 2: Comparing Linear vs Logarithmic Scale for Error Distribution.
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Figure 2A, which uses a standard linear scale for
the y-axis (Count), effectively illustrates that the vast
majority of transactions are normal, exhibiting a
reconstruction error very close to zero. However, this
representation completely obscures the distribution
of the anomalous class, as their count is orders of
magnitude smaller than that of the normal class,
rendering them invisible on this scale.

In contrast, Figure 2B utilizes a logarithmic scale
for the y-axis. This transformation compresses the
high counts of the normal transactions, thereby
making the distribution of the far less frequent
anomalous transactions clearly visible. This view is
essential as it confirms that transactions with higher
reconstruction errors are predominantly fraudulent

events. The logarithmic plot demonstrates a
discernible, albeit overlapping, separation between
the error distributions of the two classes, reinforcing
the utility of the reconstruction error as a valid
anomaly signal. The optimal threshold, derived from
the Precision-Recall curve, is shown to effectively
partition these two distributions.

Layer 1: Quantitative Performance Evaluation To
quantitatively assess the performance of the
autoencoder as a fraud detector, the Precision-Recall
(PR) and Receiver Operating Characteristic (ROC)
curves were generated, as shown in Figure 3. These
metrics are essential for evaluating classifier
performance on imbalanced datasets.

Layer 1: Model Performance Curves

Precision-Aecall Curve on Test Set

Precision

True Positive Rate (Recall

Receiver Operating Characteristic (ROC) Curve

Faise Positive Rate

Figure 3: Model Performance Curves.

The Precision-Recall curve (Figure 3, Left)
illustrates the trade-off between the model’s
precision (the fraction of flagged anomalies that are
actual frauds) and its recall (the fraction of actual
frauds that are correctly flagged). The Area Under
the Curve (PR AUC) is 0.43. A random or no-skill
classifier would achieve a PR AUC equivalent to the
prevalence of the positive class in the dataset (a value
significantly less than 0.43), indicating that the
model’s performance is substantially better than
baseline. The “Chosen Threshold,” marked in red,
represents the operating point selected to balance
precision and recall, achieving a recall of
approximately 0.39 while maintaining a precision of
around 0.70.

The ROC curve (Figure 3, Right) plots the True
Positive Rate (Recall) against the False Positive Rate
across all possible thresholds. The Area Under the
ROC Curve (ROC AUC) is 0.82. A score of 0.5
represents a no-skill classifier, while a score of 1.0
represents a perfect classifier. The achieved AUC of
0.82 signifies a strong discriminative ability,

indicating that there is an 82% probability that the
model will rank a randomly chosen fraudulent
transaction with a higher reconstruction error than a
randomly chosen legitimate transaction.

Layer 1: Visualizing the Reconstruction
Mechanism To provide a qualitative and intuitive
understanding of the autoencoder’s behavior, the
original and reconstructed feature vectors were
visualized in a two-dimensional feature space. Figure
4 illustrates this comparison for two representative
scaled features: Transaction_Amount_Local_Currency
and CH_Avg_Amount.

The left panel of Figure 4 displays the results for
normal transactions. The green points, representing
the reconstructed data (x "), form a dense cloud that
almost perfectly overlaps with the blue points,
representing the original preprocessed data (x'). This
tight correspondence visually confirms that the
model has effectively learned the underlying
manifold of normal data, resulting in a low
reconstruction error for legitimate transactions.

In contrast, the right panel displays the results for
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fraudulent transactions. A significant divergence is
evident between the original fraudulent data points
(blue) and their reconstructed counterparts (red). The
reconstructed points are often displaced from their
original locations, indicating the model’s inability to
accurately reproduce these anomalous inputs. This

displacement  visually represents a  high
reconstruction error, E(x), which is the fundamental
signal used by this layer to flag transactions as
potential anomalies. This visualization provides a
clear, mechanistic validation of the autoencoder’s
utility for this task.

Visualizing Reconstruction Error on Scaled Features
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Figure 4: Visualizing Reconstruction Error on Scaled Features.

5.2. Layer 2: Results of Supervised Fraud
Classification

The performance of the Layer 2 XGBoost classifier
was evaluated using Precision-Recall (PR) and

Receiver Operating Characteristic (ROC) curves,
presented in Figure 5. These metrics assess the
model’s ability to effectively distinguish between
legitimate and fraudulent transactions.

Layer 2: Core Model Performance Curves for Fraud Detection
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Figure 5: Core Model Performance curves for Fraud Detection.

The PR curve (Figure 5A) is particularly
informative for imbalanced classification tasks. The
model achieves a PR Area Under the Curve (AUC) of
0.69. This score represents a significant improvement
over a random baseline and demonstrates the
model’s capacity to maintain a high level of precision
across a substantial range of recall values. The

curve’s shape indicates that the model can
successfully identify a large fraction of fraudulent
transactions while minimizing the rate of false
positive alarms.

The ROC curve (Figure 5B) further underscores
the model’s exceptional discriminative power. The
model attains a ROC AUC of 096, a value
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approaching a perfect score of 1.0. This indicates a
very high probability that the model will correctly
assign a higher fraud likelihood score to a randomly
selected fraudulent transaction than to a randomly
selected legitimate one. The steepness of the curve
towards the top-left corner signifies that the model
achieves a high True Positive Rate (Recall) while
incurring a very low False Positive Rate, confirming

its robustness as a fraud likelihood estimator.

Layer 2: Classification Performance and
Probability Analysis The detailed -classification
performance of the Layer 2 XGBoost model is
presented in Figure 6. This includes both the final
classification decisions and the wunderlying
probability distributions that inform them.

Layer 2: Classification Results and Probability Distribution

A. Confusion Matrix
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Figure 6: Classification Results and Probability Distribution.

The confusion matrix (Figure 6A) quantifies the
model’s performance at the default 0.5 probability
threshold. The model correctly identified 178
fraudulent transactions (True Positives) while failing
to detect 46 (False Negatives), corresponding to a
high recall of approximately 79.5%. The model
incorrectly flagged 397 legitimate transactions (False
Positives), which reflects the trade-off made by the
scale_pos_weight parameter to prioritize the capture
of fraudulent events.

The histogram of predicted probabilities (Figure
6B) provides a more granular view of the model’s
behavior. It illustrates a clear and effective separation
between the two classes. The legitimate transactions

(blue distribution) are overwhelmingly assigned a
fraud probability near zero. In contrast, the
fraudulent transactions (orange distribution) are
assigned a much wider range of scores, with a
significant concentration at higher probabilities. This
distinct separation between the probability
distributions for the two classes is the underlying
reason for the model’s strong discriminative power,
as evidenced by its high ROC AUC score.

Layer 2: Model Interpretability and Calibration
To ensure the model’s decisions are transparent and
its probabilistic outputs are reliable, an analysis of
feature importance and model calibration was
performed (Figure 7).

Layer 2: Mode Interpretation and Reliabilty

- ¥ ',._.'_'
IIII.'II‘lIII||
3
,

- ‘

el

Figure 7: Model Interpretation and Reliability.
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The feature importance plot (Figure 7A) reveals
the key drivers of the model’s predictions. The results
align with established domain knowledge. The most
influential features are CVV_Match_Result N (CVV
does not match) and CVV_Match_Result_U (CVV
check was not performed or issuer is not certified),
followed by AVS_Response_Code_nan (missing
Address Verification System response). These
features are direct indicators of transaction risk.
Other significant features include Is_Card_Present
and various Point_of Sale_Entry_Mode categories,
highlighting the importance of the transaction’s
physical context in assessing its legitimacy.

The calibration curve (Figure 7B) evaluates the
reliability of the model’s predicted probabilities. A
perfectly calibrated model would follow the diagonal
dashed line. The curve for the XGBoost model lies
below this diagonal, indicating that the model is
somewhat under-confident; for instance, when the

model predicts a mean probability of 0.8, the actual
fraction of fraudulent transactions in that bin is closer
to 0.9. However, the curve is monotonic, which is a
crucial positive attribute. This demonstrates that an
increase in the model’s predicted probability
consistently corresponds to a true increase in the
likelihood of fraud, confirming that the probability
scores are a reliable ranking metric for risk.

5.3. Layer 3: Classification Performance and
Reliability

The performance of the final, optimized XGBoost
model for billing error detection is summarized in
Figure 8. The analysis includes the model’s
classification accuracy via a confusion matrix and the
reliability of its probabilistic outputs via a calibration
curve.

Layer 3: Final Ciassification Result and Model Reliability

A. Final Confusion Matrix

Mot Rilling Ermar

Disng B

Mot Bling Esvpe BN Ervon
Pradated Late!

18

8. Calibration Curve

{ = Layer J XGBooRx
we Partwctiy C

My r - >

witcatne J So”

Moan Padicted Probabiity Iper bin

Figure 8: Classification Result and Model Reliability.

The confusion matrix (Figure 8A) for the final
Layer 3 model demonstrates a highly practical and
well-balanced performance. The model correctly
identified 83 billing errors (True Positives) while
missing 106 (False Negatives), resulting in a recall of
approximately 44%. Critically, the model generated
only 5 False Positives, leading to an exceptionally
high precision of 94%. This indicates that when the
model flags a transaction as a billing error, the alert
is highly reliable, minimizing the operational cost of
reviewing false alarms.

The calibration curve (Figure 8B) assesses the
trustworthiness of the model’s probability scores.
The curve for the Layer 3 model exhibits a sigmoidal
shape relative to the “Perfectly Calibrated” diagonal.

This indicates the model is slightly under-confident
for low-probability predictions and slightly over-
confident for high-probability predictions. However,
the curve is strongly monotonic, showing a clear
positive  correlation between the predicted
probability and the actual fraction of positive cases.
This confirms that the model’s probability scores are
effective for ranking transactions by their likelihood
of being a billing error, even if they are not perfectly
calibrated.

Layer 3: Quantitative Performance Metrics The
quantitative performance of the optimized Layer 3
model is further detailed by the Precision-Recall (PR)
and Receiver Operating Characteristic (ROC) curves,
presented in Figure 9.
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Layer 3: Core Madel Performance for Billing Error Detection

A Precision-Recall Curve
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Figure 9: Core Model Performance for Billing Error Detection.

The PR curve (Figure 9A) for the billing error
detector achieves an Area Under the Curve (AUC) of
0.59. This result is substantially better than a random
baseline and demonstrates the model’s effectiveness.
The curve illustrates the inherent trade-off in the
detection task; the model can maintain very high
precision at recall levels below approximately 0.4,
after which precision begins to decline more rapidly
as the model attempts to identify a larger fraction of
the positive class. This performance is indicative of a
practical classifier that can be tuned to prioritize
either high alert reliability or comprehensive
detection  depending on the  operational
requirements.

The ROC curve (Figure 9B) confirms the model’s

strong discriminative capabilities with a ROC AUC
of 0.94. This high value indicates that the model is
very effective at ranking transactions, with a 94%
probability of assigning a higher risk score to a
random billing error than to a random legitimate
transaction. The sharp ascent of the curve toward the
top-left corner demonstrates that the model achieves
a high True Positive Rate (Recall) while maintaining
a low False Positive Rate, solidifying its utility as a
reliable detector for billing anomalies.

Layer 3: Probability Distribution and Feature
Analysis Further insight into the behavior of the
Layer 3 model is provided by an analysis of its
predicted probability distribution and feature
importances, as shown in Figure 10.

Layer 3: Probability Distribution and Key Features
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Figure 10: Probability Distribution and Key Features.

The distribution of predicted probabilities (Figure
10A) confirms the model’s conservative nature,
which is appropriate for a high-precision task. The
vast majority of transactions are assigned a billing
error probability very close to zero, aligning with the

low prevalence of billing errors in the dataset. The
small number of transactions that receive a higher
probability score are the ones targeted for review,
and as established by the confusion matrix, these
high-probability predictions are highly reliable.
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The feature importance plot (Figure 10B)
identifies the primary drivers of the model’s
decisions. The most significant feature is
CVV_Match_Result_nan, indicating that transactions
where the CVV check was not performed or was
unavailable are strong indicators of potential billing
discrepancies. Other key features include
Time_Since_CH_Last_Transaction_Overall Min  and
Point_of Sale_Entry_Mode_E-commerce,  suggesting

that the timing of transactions and the context of
online purchases are highly relevant for
distinguishing billing errors. The importance of
various merchant category codes further underscores
the model’s ability to learn patterns associated with
specific types of merchants.

Layer 3: Billing Error Type Classification
Results

Table 1: Classification Report of Random Forest Model to Determine Billing Error Type.

Class Precision Recall F1-Score Support
Duplicate_Charge 1.00 0.96 0.98 23
Unwanted_Subscription_Renewal 0.99 1.00 1.00 166
Accuracy 0.99 189
Macro Avg 1.00 0.98 0.99 189
Weighted Avg 0.99 0.99 0.99 189

Furthermore, the second-stage Random Forest
classifier, tasked with categorizing the specific
Billing Error_Type for transactions already flagged
by the binary detector, demonstrated exceptional
performance. On the test set of confirmed billing
errors, this multi-class model achieved an overall
accuracy of 99%. As detailed in Table 1, it was highly
effective at distinguishing between the two primary
error types, achieving 1.00 precision and 0.96 recall
for Duplicate_Charge, and 0.99 precision and 1.00
recall for Unwanted_Subscription_Renewal. This
high-performing classification stage, with a weighted
Fl1-score of 0.99, confirms the system’s capability to

not only detect billing errors but also to accurately
classify their nature for effective operational
handling.

5.4. Layer 4: Meta-Learner Performance Evaluation

The overall performance of the Layer 4 meta-
learner, which provides the final system-wide risk
assessment, is evaluated using the PR and ROC
curves shown in Figure 11. These curves are
generated based on the model’s ability to predict the
unified Meta_Target_High_Risk target.

Layer 4: Meta-Leamer Performance Curves

A Precision-Recall Curve far High-Risk Events

Rec

B. ROC Curve for High-Risk Events

Figure 11: Meta-Learner Performance Curves.

The PR curve (Figure 11A) for the meta-learner
achieves an AUC of 0.62. This strong performance
indicates that the synthesized risk score is highly
effective. The shape of the curve demonstrates that
the model can identify over 30% of all high-risk

events (recall) while maintaining nearly perfect
precision. This highlights the meta-learner’s ability to
successfully combine the signals from the preceding
layers to produce a highly reliable final risk score.
The ROC curve (Figure 11B) further validates the
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final model’s effectiveness, with a ROC AUC of 0.94.
This near-perfect score signifies an excellent capacity
to discriminate between high-risk and benign
transactions. The steep initial ascent of the curve
demonstrates that the meta-learner can achieve a
very high True Positive Rate while maintaining a
minimal False Positive Rate, confirming that the
multi-layered architecture successfully culminates in

a robust and accurate final decision engine.

Layer 4: Final Classification Performance and
Interpretability The final performance and
interpretability of the meta-learner are detailed in
Figure 12, which presents the confusion matrix for
the wunified high-risk target and the feature
importances that drive the final decision.

Layer 4: Meta-Learner Classification and Feature Analysis
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Figure 12: Meta-Learner Classification and Feature Analysis.

The confusion matrix (Figure 12A) for the
Meta_Target_High Risk demonstrates the system’s
overall effectiveness. The model correctly identifies
164 high-risk events (True Positives) while missing
only 35 (False Negatives). This corresponds to a final
system-wide recall of approximately 82.4%,
indicating that the multi-layered architecture is
highly successful at its primary goal of capturing the
vast majority of adverse events, including both fraud
and billing errors.

The feature importance plot (Figure 12B) provides
crucial insight into how the meta-learner synthesizes
the signals from the preceding layers. The most
influential feature is the Layerl_Reconstruction_Error,
confirming the significant value of the initial
unsupervised anomaly detection layer in identifying
transactions that deviate from the norm. The
Layer3_Billing_Error_Probability and
Layer2_Fraud_Probability also hold substantial
positive coefficients, indicating that the meta-learner
correctly associates higher probabilities from these
specialist models with increased overall risk. This
analysis confirms that the meta-learner has
successfully learned a logical and effective strategy
for combining the outputs of the specialist models
into a reliable, final risk assessment.

Layer 4: Actionable Insights and Risk
Distribution The final output of the Inteligent Credit

Sentinel system is a set of recommended actions
derived from the meta-learner’s risk probability
scores. Figure 13 illustrates the distribution of these
actions and the underlying risk scores that
determined them.

The bar chart of suggested actions (Figure 13A)
demonstrates the system’s operational output. Based
on predefined risk thresholds (0.4 for review, 0.7 for
decline), the vast majority of transactions are
categorized as 'Approve', which is expected in a real-
world scenario. A smaller, manageable number of
transactions are escalated for 'Flag For_Review' or
immediate 'Decline_Or_StepUp', showcasing the
system’s ability to translate probabilistic outputs into
a practical and efficient workflow.

The histogram of the final risk scores (Figure 13B)
provides a compelling visualization of the model’s
confidence. The distribution is distinctly bimodal,
with a large peak of low-risk scores concentrated
near zero and a smaller, but clearly defined, peak of
high-risk scores concentrated near 1.0. This
separation indicates that the meta-learner is highly
decisive, with very few transactions falling into an
ambiguous intermediate-risk category. The plot
confirms that the action thresholds are well-
positioned to effectively segment the low-risk and
high-risk  populations, providing a strong
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justification for the final decisioning logic.

Layer 4: Final Decisions and Underlying Risk Distribution
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Figure 13: Final Decisions and Underlaying Risk Distribution.

Layer 4: Case Study of the Decision Engine To
demonstrate the end-to-end functionality of the
multi-layered system, Table 1 presents a selection of
outputs from the Layer 4 meta-learner. The table
showcases how the final risk probability and
suggested action are derived from the inputs of the
preceding layers.

The examples illustrate the system’s behavior on
typical, low-risk transactions, where low
probabilities from all layers result in a low final risk
score and an 'Approve' action. The most illustrative
case is that of transaction 67513, a confirmed
fraudulent event. For this transaction, the Layer 1
anomaly score and Layer 3 billing probability are
both low. However, the Layer 2 fraud detector
assigned a very high fraud probability of 0.99243.

The meta-learner correctly synthesized these
inputs, assigning the highest importance to the
strong signal from the fraud detection layer.
Consequently, it produced a final risk probability of
0.95195, leading to the correct suggested action of
'Decline_Or_StepUp'. This case study effectively
demonstrates the core strength of the multi-layered
architecture: the ability of the final decision engine to
intelligently weigh the evidence from different
specialist models to arrive at an accurate and
actionable conclusion.

6. DISCUSSION

The development and evaluation of the Inteligent
Credit Sentinel system reveal several key insights into
the effectiveness of a multi-layered architecture for
detecting diverse financial transaction risks. This
discussion synthesizes the findings from the
unsupervised anomaly screener, the specialized

supervised classifiers, and the final meta-learner,
focusing on their comparative performance and the
practical implications of the hierarchical design. The
results confirm that a modular, multi-faceted
approach not only enhances detection accuracy but
also creates a more interpretable and operationally
efficient framework for managing risk.

6.1. The Synergy of Unsupervised and Supervised
Learning

A primary finding of this study is the distinct but
complementary roles of unsupervised and
supervised learning methodologies (Zimbe et al,
2025). The Layer 1 autoencoder established its utility
as a broad-based anomaly screener, successfully
learning a representation of normative behavior to
flag transactions that deviated from the norm (Nettey
& Ansong, 2025). It demonstrated a foundational
ability to identify fraudulent events without any
prior labels (Nettey & Ansong, 2025). However, its
performance was significantly surpassed by the
Layer 2 supervised XGBoost model, which was
trained specifically on fraud labels and achieved a
much higher recall (Zimbe et al., 2025). This contrast
underscores a fundamental principle: while
unsupervised methods are invaluable for detecting
novel anomalies (Zimbe et al., 2025), supervised
models achieve superior performance on well-
defined targets (Zimbe et al., 2025). The true synergy,
however, was revealed in the final Layer 4 meta-
learner (Zimbe et al., 2025), where the Layer 1
reconstruction error emerged as the single most
important feature for the final risk decision. This
demonstrates that the unsupervised layer provided a
powerful, overarching context of "abnormality" that,

SCIENTIFIC CULTURE, Vol. 12, No 2.1, (2026), pp. 291-309



307

INTELLIGENT CREDIT SENTINEL

when combined with the specific insights of the
supervised layers (Zimbe et al., 2025), created a more
robust and effective final model than any single
component could achieve on its own (Nettey &
Ansong, 2025).

6.2. Deconstructing Risk: The Divergent Signatures
of Fraud and Billing Errors

The investigation revealed a clear disparity in the
“detectability” of fraudulent transactions versus
billing errors, highlighting that not all risks present
equally strong signals. The Layer 2 fraud model
attained an exceptional ROC AUC of 0.96, driven by
features with clear, unambiguous links to fraudulent
activity, such as failed CVV and AVS checks. These
“smoking gun” indicators allowed the model to
easily and confidently separate fraud from legitimate
transactions. In contrast, the Layer 3 billing error
detector required extensive feature expansion and
tuning to achieve its strong final performance. Its key
features were more subtle and circumstantial, relying
on transaction timing and merchant-specific history.
This suggests that billing errors have a more
ambiguous signature that can closely resemble
normal customer behavior, making them an
inherently more challenging detection problem. This
finding validates the architectural decision to
dedicate a separate, highly-tuned layer to this
specific challenge rather than grouping it with the
more distinct patterns of fraud. (Zimbe et al., 2025)

6.3. From Probabilities to Practicality: The Role
of Model Tuning and Calibration

This research underscores the critical importance
of iterative model tuning in transforming a
theoretically powerful model into a practically useful
one. The initial supervised models, particularly for
the rare billing error class, were not immediately
effective despite strong underlying metrics like a
high ROC AUC. Achieving a balance between
capturing rare events (recall) and minimizing false
alarms (precision) required a rigorous, data-driven
tuning process. The automated hyperparameter
search for the Layer 3 model, which identified an
optimal scale_pos_weight of 2.82, was instrumental.
This single tweak transformed the model from a
high-recall but impractical detector into a well-
balanced classifier with exceptional 94% precision.
This journey from a raw model to a refined one
highlights that for imbalanced classification
problems, the process of navigating the precision-
recall trade-off through careful hyperparameter
optimization is as important as the initial choice of
algorithm itself. (Zimbe et al., 2025)

6.4. The Meta-Learner as an Intelligent Arbiter

The success of the Layer 4 meta-learner
demonstrates the core strength of the multi-layered
architecture: the ability to synthesize diverse,
specialized signals into a single, superior decision
metric. The final model achieved a remarkable
system-wide recall of approximately 82.4% for the
unified “High-Risk Event” target, confirming its
effectiveness. The feature importance analysis
revealed that the meta-learner did not simply
average the inputs but learned to weigh them
intelligently. Its reliance on the Layer 1 anomaly
score as the most critical feature suggests it learned
to prioritize the general signal of “weirdness” as a
primary indicator of risk, which it then refined using
the more specific fraud and billing error
probabilities. Furthermore, the bimodal distribution
of its final risk scores —with clear peaks at very low
and very high risk—proves that the final engine is
highly decisive, avoiding the ambiguity that can
plague monolithic systems and providing a clear
basis for action.

6.5. A Hierarchical Architecture as a Blueprint
for Operational Efficiency

Ultimately, the Inteligent Credit Sentinel system
serves as a compelling blueprint for a practical and
efficient risk management workflow. The tiered
structure mirrors a sophisticated human-led
operational process: a low-cost, automated initial
screening (Layer 1) filters the vast majority of
transactions, followed by analysis from dedicated
experts (Layers 2 and 3), with a final “manager”
(Layer 4) making an evidence-based decision. This
hierarchical approach is inherently efficient,
ensuring that the most intensive scrutiny is reserved
for the small subset of transactions that truly warrant
it. By translating the final, confident risk scores into
concrete, triaged actions — Approve, Flag_For_Review,
and Decline_Or_StepUp — the system provides a clear,
automated, and interpretable pathway from data to
decision, representing a robust and scalable
paradigm for modern financial security.

7. CONCLUSION

The challenge of securing digital transactions in
an era of ever-evolving threats demands a paradigm
shift away from singular, monolithic defenses
toward more dynamic, intelligent, and multi-faceted
systems. This research confronted this challenge by
proposing and validating the Inteligent Credit
Sentinel, a novel four-layered architecture designed
to deconstruct and analyze transaction risk with a
depth and specificity that a single model cannot
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achieve. By treating different risk types not as a
singular problem but as distinct challenges requiring
specialized expertise, we have demonstrated a path
to a more robust and efficient security posture.

The journey through the layers of the Sentinel has
yielded significant insights. We confirmed that an
unsupervised autoencoder can serve as an effective
first-line screener, identifying general abnormality
and providing a crucial, high-level context that
proved indispensable to the final decision engine. We
further demonstrated that specialized, supervised
XGBoost models, when meticulously tuned to
navigate the critical trade-off between precision and
recall, can achieve exceptional performance in
detecting the distinct signatures of both overt fraud
and subtle billing errors. The true success of the

learner, which acted not as a simple aggregator but
as an intelligent arbiter, learning to weigh the
evidence from each preceding layer to forge a single,
confident, and highly accurate risk assessment.

Ultimately, the Inteligent Credit Sentinel system
serves as a compelling blueprint for a new generation
of financial security systems. It successfully
translates a complex hierarchy of probabilistic
outputs into a clear, triaged, and actionable
workflow, proving that a modular, multi-layered
approach can deliver a solution that is at once
powerful in its accuracy, elegant in its design, and
practical in its application. The principles
demonstrated herein offer a promising and scalable
framework for building the resilient financial
ecosystems of the future.

architecture, however, was realized in the final meta-
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