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ABSTRACT 

Traditional monolithic systems struggle against the dynamic nature of financial fraud and other transactional 
risks. This paper introduces the Intelligent Credit Sentinel, a novel four-layered hierarchical architecture 
designed for robust and multi-faceted transaction risk assessment. The system employs an unsupervised 
autoencoder for broad anomaly detection (Layer 1), two specialized supervised XGBoost classifiers for 
targeted fraud and billing error detection (Layers 2 & 3), and a final logistic regression meta-learner to 
synthesize these outputs into a single, actionable risk score (Layer 4). Through extensive feature engineering 
and hyperparameter tuning to manage severe class imbalance, the specialist layers achieved high performance, 
with the final billing error model attaining 94% precision. The synergistic combination of these layers in the 
meta-learner resulted in a final system-wide recall of 82.4% for all high-risk events. The findings demonstrate 
that this modular, tiered approach is a highly effective, interpretable, and operationally efficient paradigm for 
modern financial security. 

KEYWORDS: Fraud Detection, Multi-Layered Architecture, Meta-Learner, Anomaly Detection, XGBoost, 
Class Imbalance. 
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1. INTRODUCTION 

In the ever-expanding landscape of digital 
finance, the integrity of electronic transactions is 
paramount (Goldstein & Uchida, 2016; Nata et al., 
2025). Yet, with each technological advance that 
simplifies commerce, a shadow-self emerges in the 
form of increasingly sophisticated financial fraud 
(Mienye& Sun, 2023; . Credit card fraud, in 
particular, represents a multi-billion dollar challenge, 
evolving from simple theft to complex schemes that 
exploit both technical vulnerabilities and human 
behavior (Mienye& Sun, 2023; (Niu et al., 2019). 

Traditional fraud detection systems, often relying 
on monolithic models, have been shown in the 
literature to struggle with this dynamic threat (Niu et 
al., 2019; (Jeyaraj et al., 2024). While these systems can 
be effective at identifying known fraud patterns, 
research indicates they often fall short when faced 
with novel attack vectors or entirely different classes 
of transactional issues (Niu et al., 2019; (Jeyaraj et al., 
2024). Intricate billing errors, for example, represent 
a separate class of problem that can erode consumer 
trust and incur significant operational costs, yet are 
not the primary target of traditional fraud-focused 
models ("Machine Learning for Identifying Fraud in 
Credit Card Transactions", 2024). 

This paper addresses the critical need for a more 
resilient and multi-faceted approach to transaction 
security (Jeyaraj et al., 2024). We posit that to address 
these documented limitations, a single, all-
encompassing model is no longer sufficient (Niu et 
al., 2019; (Jeyaraj et al., 2024). Instead, we propose a 
hierarchical system of specialized "experts," each 
trained for a specific task, to provide a more robust 
and intelligent defense (Jeyaraj et al., 2024)(Rihan et 
al., 2023). To this end, we introduce the Intelligent 
Credit Sentinel, a novel four-layered architecture 
designed to dissect and analyze transaction risk from 
multiple perspectives (Rihan et al., 2023). 

The proposed system begins with a broad, 
unsupervised Layer 1, an autoencoder-based 
anomaly screener that acts as a vigilant gatekeeper, 
identifying any transaction that deviates from the 
norm without prior knowledge of specific threats 
(Goldstein & Uchida, 2016; Nata et al., 2025). This is 
followed by two parallel, supervised specialist 
models: a Layer 2 XGBoost classifier, meticulously 
trained to identify the complex signatures of known 
fraudulent activities (Jeyaraj et al., 2024), and a 
highly-tuned Layer 3 XGBoost model, designed to 
detect the more subtle and ambiguous patterns of 
billing errors ("Machine Learning for Identifying 
Fraud in Credit Card Transactions", 2024). The 
intelligence of these disparate layers is then 

synthesized by a Layer 4 meta-learner, a final 
decision engine that weighs the evidence from each 
expert to produce a single, actionable risk assessment 
(Rihan et al., 2023). 

This paper details the design, implementation, 
and rigorous evaluation of each layer of the 
Intelligent Credit Sentinel. The methodology and 
results for the unsupervised anomaly detector are 
presented, followed by the development and 
performance of the supervised classifiers for fraud 
and billing errors (Jeyaraj et al., 2024). Finally, the 
paper describes the meta-learner and evaluates the 
performance of the system as a whole (Rihan et al., 
2023). Through this multi-layered approach, we 
demonstrate a system that is not only highly accurate 
but also interpretable and operationally efficient (- et 
al., 2025), offering a more comprehensive paradigm 
for modern transaction security (Jeyaraj et al., 2024). 

2. LITERATURE REVIEW 

Traditional fraud detection, which relies on static, 
manually-defined rules (Malik et al., 2022), struggles 
with significant limitations. These systems are 
inherently reactive rather than proactive, lack 
flexibility, and are time-consuming to maintain 
(Malik et al., 2022). Rule-based approaches employ 
binary features that flag transactions based on 
predetermined thresholds, such as geographic 
anomalies (Boulieris et al., 2023), yet these static rules 
are easily circumvented by evolving fraud 
techniques (Pk, 2023). In contrast, machine learning 
(ML) models represent a fundamental shift, enabling 
systems to adaptively learn complex patterns from 
large datasets (Pk, 2023). ML algorithms can 
efficiently analyze massive transaction volumes to 
identify nuanced patterns that conventional 
techniques overlook (Pk, 2023). Deep learning and 
advanced ML architectures, in particular, provide 
superior performance by automatically discovering 
discriminative features and adapting to emerging 
fraud schemes (Alarfaj et al., 2022). This transition 
from static, expert-defined rules to data-driven, 
adaptive ML models addresses the core weaknesses 
of traditional systems, offering a proactive and 
scalable solution for detecting sophisticated, 
evolving fraudulent activities (Malik et al., 2022). 

Unsupervised learning approaches, particularly 
autoencoders, have emerged as powerful tools for 
anomaly detection in financial systems without 
requiring labeled fraud data (Jiang et al., 2023). 
Autoencoders learn to reconstruct normal 
transaction patterns by minimizing reconstruction 
error, enabling them to identify significant deviations 
from this learned normality as anomalies (Jiang et al., 
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2023; Wu & Wang, 2021). This unsupervised 
paradigm is valuable because it circumvents the 
challenge of obtaining comprehensive labeled 
datasets and can adapt to unknown attack patterns 
(Jiang et al., 2023). Hybrid architectures combining 
autoencoders with generative adversarial networks 
(GANs) may further enhance these detection 
capabilities (Wu & Wang, 2021). In the financial 
domain, unsupervised autoencoders serve as an 
effective first line of defense, flagging generally 
abnormal transactions for subsequent analysis (Wu 
& Wang, 2021). By treating fraudulent transactions as 
anomalous deviations, these models can identify 
suspicious activities without prior knowledge of 
specific fraud schemes (Jiang et al., 2023). This 
addresses critical limitations of purely supervised 
methods, offering a scalable, adaptive solution for 
detecting novel fraudulent patterns (Jiang et al., 2023; 
Wu & Wang, 2021). 

In parallel, supervised learning models like 
XGBoost and Random Forests have demonstrated 
effective performance in credit card fraud detection 
by leveraging labeled data to learn specific fraud 
patterns (Niu et al., 2019). These ensemble methods 
excel at capturing the complex, non-linear 
relationships between transaction features and 
predefined risk categories (Niu et al., 2019). Both 
XGBoost and Random Forests achieve high accuracy 
through their ability to iteratively refine predictions 
and handle feature interactions that simpler models 
may overlook (Niu et al., 2019). Comparative studies 
indicate that supervised models generally 
outperform unsupervised approaches when 
sufficient labeled data is available, as they are 
directly optimized to distinguish between normal 
and abnormal transactions (Niu et al., 2019). The 
strength of these methods lies in their capacity to 
learn patterns specific to known fraud types, 
enabling precise classification (Niu et al., 2019). 
However, this strength is also their primary 
limitation, as they require substantial labeled 
datasets and may fail to identify novel, previously 
unseen fraud schemes (Niu et al., 2019). In multi-
layered frameworks, these classifiers can thus 
function as specialized secondary layers, building 
upon an initial anomaly detection phase to provide 
targeted, high-confidence identification of specific, 
predefined risks (Niu et al., 2019). 

A critical challenge in this domain is the severe 
class imbalance inherent in financial datasets, where 
fraudulent transactions constitute a small fraction of 
total activity. This imbalance causes standard models 
to exhibit a strong bias toward the majority 
(legitimate) class (Youssef, 2025; Salekshahrezaee et 

al., 2023). This bias degrades model performance, 
particularly in detecting the minority fraud class, 
which is the primary objective of the system 
(Salekshahrezaee et al., 2023). The literature identifies 
two complementary approaches to this problem: 
data-level and algorithm-level techniques 
(Salekshahrezaee et al., 2023). Data-level methods 
modify the class distribution through random 
undersampling of the majority class or oversampling 
techniques such as SMOTE (Synthetic Minority 
Oversampling Technique) and its variants (Youssef, 
2025; Salekshahrezaee et al., 2023). Algorithm-level 
approaches, by contrast, employ cost-sensitive 
learning or class weighting strategies that apply a 
higher penalty for misclassifying the minority fraud 
class during model training (Salekshahrezaee et al., 
2023). Studies demonstrate that combining these 
techniques with ensemble classifiers like XGBoost 
significantly improves fraud detection performance 
(Youssef, 2025; Hájek et al., 2022). By strategically 
addressing class imbalance, robust systems can be 
developed that effectively identify rare fraudulent 
transactions (Youssef, 2025; Salekshahrezaee et al., 
2023). 

To overcome the limitations of any single 
approach, hybrid and meta-learning architectures 
have emerged as a powerful paradigm for 
synthesizing outputs from multiple specialist models 
(Airlangga, 2024). Stacking ensemble techniques 
combine diverse base learners—such as Random 
Forest, XGBoost, and Support Vector Machines 
(SVM)—through a meta-learner that optimally 
integrates their predictions (Airlangga, 2024). This 
"stacking" approach leverages the complementary 
strengths of different algorithms: unsupervised 
methods excel at detecting novel anomalies, while 
supervised classifiers focus on identifying known 
fraud patterns (Airlangga, 2024). The meta-learner, 
often a simpler model like logistic regression, learns 
to weigh the evidence from these base models to 
produce a unified, superior risk score (Airlangga, 
2024). Empirical studies demonstrate that stacked 
ensembles can substantially improve fraud detection 
accuracy by effectively mitigating individual model 
weaknesses (Airlangga, 2024). By integrating 
unsupervised anomaly detection with supervised 
classifiers, these hybrid architectures create robust, 
multi-layered defense systems capable of identifying 
both known and unknown threats (Airlangga, 2024). 

The existing literature, therefore, reveals a critical 
gap. Research predominantly addresses either 
general anomaly detection or singular, binary fraud 
classification tasks (Airlangga, 2024). While many 
studies employ ensemble methods and advanced 
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algorithms, there is a lack of comprehensive 
frameworks designed to simultaneously distinguish 
between multiple distinct risk types—such as 
targeted fraud versus billing errors—within a single, 
unified system. Most research focuses on a binary 
(fraud/legitimate) classification without addressing 
the practical, operational need to differentiate 
between specific, actionable risk categories (Hájek et 
al., 2022). Few studies propose multi-layered hybrid 
architectures that combine unsupervised screening 
with specialized supervised experts for distinct risk 
types, all synthesized by a meta-learner. This paper's 
proposed four-layer system fills this gap by 
providing a comprehensive, operationally-aligned 
framework that advances beyond existing single-
objective or general anomaly detection approaches. 

3. OBJECTIVE OF THE STUDY 

The primary objective of this paper is to design 
and develop a multifaceted hierarchical model for 
credit card fraud detection, recognizing that reliance 
on a single detection method is insufficient in today’s 
complex financial environment. The proposed 
approach aims to integrate multiple detection 
techniques within a layered framework to enhance 
accuracy, reduce falsepositives and improve 
adaptability against evolving fraud strategies. 

4. METHODOLOGY 

4.1. Variables 

The multi-layered architecture of the system 
necessitated a distinct set of variables for each 
analytical stage, tailored to the specific objective of 
each model. The features were engineered from core 
transaction data, historical cardholder and merchant 
profiles, and the outputs of preceding layers. 

The primary input variables can be categorized as 
follows 

The multi-layered architecture of the system 
necessitated a distinct set of variables for each 
analytical stage, tailored to the specific objective of 
each model. The features were engineered from core 
transaction data, historical cardholder and merchant 
profiles, and the outputs of preceding layers. 

The primary input variables can be categorized 
as follows 

These features provide the fundamental context 
of each transaction. They include the 
Transaction_Amount_Local_Currency, 
Merchant_Category_Code (MCC), 
Point_of_Sale_Entry_Mode, and boolean flags 
indicating if the transaction was Is_Card_Present or an 
Is_Cross_Border_Transaction. For Card-Not-Present 
(CNP) transactions, AVS_Response_Code and 

CVV_Match_Result were also incorporated. 
Cardholder and Merchant Profiles To 

contextualize the transaction within broader 
patterns, variables representing the cardholder and 
merchant were used. Cardholder features included 
Credit_Limit, Reported_Fraud_History_Count, 
Billing_Dispute_History_Count, and a pre-assigned 
Persona_Type. Merchant attributes were represented 
by Merchant_Risk_Level and 
Historical_Billing_Dispute_Rate_Global. 

Cardholder Historical Behavior Baselines To 
establish a behavioral baseline for each cardholder, 
several features were calculated based on their 
historical activity. These included statistical 
measures of their typical transaction amount 
(CH_Avg_Amount, CH_Median_Amount, 
CH_StdDev_Amount) and a Z-score 
(CH_Transaction_Amount_ZScore) to normalize the 
current transaction amount against their history. 
Behavioral frequency was captured by 
CH_Count_Transactions_per_Day and 
CH_Frequency_MCC_Usage. 

Engineered Temporal and Velocity Features 

Time was a critical dimension, addressed through 
several engineered features. The Transaction_Hour 
was transformed into cyclical features (hour_sin, 
hour_cos) to preserve the continuity of the 24-hour 
cycle. Recency was captured via 
Time_Since_CH_Last_Transaction_Overall_Min and 
Time_Since_CH_Last_Transaction_at_Same_Merchant_
Min. To model short-term spending velocity, a series 
of features were calculated over rolling time 
windows of 1, 6, 24, and 168 hours, including 
transaction counts 
(CH_Count_Transactions_Last_X_Hours), transaction 
sums 
(CH_Sum_Amount_Transactions_Last_X_Hours), and 
the count of unique merchants 
(CH_Count_Unique_Merchants_Last_X_Hours). The 
Transaction_DayOfWeek was also included as a 
categorical variable. 

Inter-Layer Features The Layer 4 meta-learner 
utilized the probabilistic outputs from the preceding 
layers as its primary inputs. These variables were the 
Layer1_Reconstruction_Error from the autoencoder, 
the Layer2_Fraud_Probability from the fraud detection 
model, and the Layer3_Billing_Error_Probability from 
the billing anomaly detector. The original 
Transaction_Amount_Local_Currency was also passed 
to this final layer to provide context. 

Target Variables The dependent variables for the 
supervised models were Is_Fraud for the Layer 2 
fraud estimator and Is_Billing_Error for the Layer 3 
billing anomaly detector. A secondary model in 
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Layer 3 also predicted the Billing_Error_Type. The 
Layer 4 meta-learner was trained on a composite 
binary target, Meta_Target_High_Risk, which was 
positive if a transaction was classified as either fraud 
or a billing error. 

Initial Preprocessing To ensure the model was 
evaluated in a realistic scenario, the dataset was first 
sorted chronologically by Timestamp. A time-based 
80/20 train-test split was then performed, training the 
models on the first 80% of the data and evaluating them 
on the most recent 20%. 

For use in each layer’s specific ColumnTransformer, 
standardized preprocessing pipelines were created 
based on the variable types. 

Numerical Features Processed by first imputing 
missing values with the median, followed by scaling 
with StandardScaler. 

Categorical Features: Processed by imputing missing 
values with a constant 'Missing' string (treating non-
response as a distinct category) and then transforming 
them using OneHotEncoder. 

4.2. Layer 1: Unsupervised Anomaly Screening via 
Deep Autoencoder 

The first layer of the proposed Inteligent Credit 
Sentinel system is an unsupervised anomaly screener 
designed to identify transactions that deviate from 
established patterns of normal behavior. For this task, we 
employ a deep autoencoder, a neural network trained to 
reconstruct its own input. The core principle is that a 
model trained exclusively on legitimate transactions will 
exhibit a significantly higher reconstruction error when 
presented with an anomalous or fraudulent transaction 
it has not seen before. This reconstruction error serves as 
a valuable anomaly score. 

Input Vector Representation Each transaction is 
formally represented as a feature vector 𝐱 ∈ ℝ𝐷, 
where 𝐷 is the total number of raw features. This 
vector is a concatenation of numerical and categorical 
feature subsets, 𝐱 = [𝐱𝑛𝑢𝑚, 𝐱𝑐𝑎𝑡]. 

Based on the implemented feature selection, the 
numerical feature vector, 𝐱𝑛𝑢𝑚, includes 
transactional attributes such as 
Transaction_Amount_Local_Currency, cardholder 
spending patterns like CH_Avg_Amount and 
CH_Transaction_Amount_ZScore, and cyclical time-
based features hour_sin and hour_cos. The categorical 
feature vector, 𝐱𝑐𝑎𝑡, includes 
Merchant_Category_Code, Point_of_Sale_Entry_Mode, 
and Persona_Type, among others. 

Data Pre-processing Prior to model training, a 
preprocessing function, denoted as 𝛷(⋅), is applied to 
transform the raw input vector 𝐱 into a scaled and 
encoded vector 𝐱′. This function consists of two main 

operations: 

 Min-Max Scaling Applied to the numerical 
features 𝐱𝑛𝑢𝑚, this operation scales each 
feature to a range of [0,1]. 

 One-Hot Encoding Applied to the 
categorical features 𝐱𝑐𝑎𝑡, this operation 
converts each categorical variable into a 
binary vector representation. 

The resulting preprocessed vector, 𝐱′ = 𝛷(𝐱), has 
a dimensionality of 𝑑, where 𝑑 corresponds to the 
input_dim variable in the implementation. 

Autoencoder Architecture The autoencoder 
architecture consists of two primary components: an 
encoder and a decoder. 

The encoder, denoted by the function 𝑓, maps the 
preprocessed input vector 𝐱′ to a lower-dimensional 

latent space representation 𝐳 ∈ ℝ𝑘, where 𝑘 < 𝑑. This 
is formally expressed as: 

z = 𝑓(x′) 
The encoder is composed of a series of 𝐿 dense 

layers, where the output of each layer 𝑖 is given by: 
h𝑖 = 𝜎𝑟𝑒𝑙𝑢(W𝑖h𝑖−1 + b𝑖) for 𝑖 = 1,… , 𝐿 

Here, h0 = x′, W𝑖 and b𝑖  are the weight matrix and 
bias vector for layer 𝑖 respectively, and 𝜎𝑟𝑒𝑙𝑢(𝑎) =
max(0, 𝑎) is the Rectified Linear Unit (ReLU) 
activation function. The latent vector is the output of 
the final encoder layer, z = h𝐿. 

The decoder, denoted by the function 𝑔, mirrors 
the encoder’s architecture. It attempts to reconstruct 
the original input vector from the latent 
representation z, producing a reconstructed vector x̂′: 

x̂′ = 𝑔(z) = 𝑔(𝑓(x′)) 

The decoder is composed of dense layers with 
ReLU activations, culminating in a final output layer 
with a sigmoid activation function, 𝜎𝑠𝑖𝑔(𝑎) = (1 +

𝑒−𝑎)−1, to ensure the output values are constrained to 
the [0,1] range, matching the Min-Max scaled input. 

Objective Function and Anomaly Score The 
autoencoder is trained by minimizing an objective 
(loss) function, ℒ, which measures the dissimilarity 
between the original and reconstructed vectors. We 
employ the Mean Squared Error (MSE), defined as 
the squared Euclidean norm (𝐿2-norm) of the 
difference vector. For a set of 𝑁 normal training 
samples {𝐱′1, … , 𝐱′𝑁}, the loss is: 

ℒ(𝜃) =
1

𝑁
∑| |

𝑁

𝑖=1

𝐱′𝑖 − 𝐱̂′𝑖| |2
2

=
1

𝑁
∑| |

𝑁

𝑖=1

𝐱′𝑖 − 𝑔(𝑓(𝐱′𝑖))| |2
2 

where 𝜃 represents all trainable model parameters 
(weights and biases). 

After training on the normal transaction dataset 
normal_train_df_l1, the model’s parameters are fixed. 
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For any new transaction, 𝐱𝑛𝑒𝑤, its anomaly score, 
𝐸(𝐱𝑛𝑒𝑤), is calculated as its reconstruction error: 

𝐸(𝐱𝑛𝑒𝑤) = | |𝛷(𝐱𝑛𝑒𝑤) − 𝑔 (𝑓(𝛷(𝐱𝑛𝑒𝑤))) | |2
2 

A transaction is flagged as an anomaly if its score 
𝐸 exceeds a predetermined threshold, 𝜏. 

4.3. Layer 2: Supervised Fraud Likelihood Estimation 

While the Layer 1 autoencoder serves as a general 
anomaly screener, Layer 2 employs a supervised 
learning approach to specifically model the complex, 
non-linear patterns indicative of known fraudulent 
activities. For this task, we utilize XGBoost, a highly 
efficient and scalable implementation of Gradient 
Boosting Decision Trees (GBDT), to produce a 
probabilistic fraud likelihood score for each 
transaction. 

Model Formulation The XGBoost model 
constructs an ensemble of 𝐾 regression trees. The 
final prediction for a given input feature vector 𝐱𝑖 is 
the sum of the predictions from each individual tree, 
passed through a logistic function to produce a 
probability. Let 𝑓𝑘 represent the 𝑘-th tree in the 
ensemble; the raw prediction score 𝑦̂𝑖 is given by: 

𝑦̂𝑖 = ∑𝑓𝑘

𝐾

𝑘=1

(𝐱′𝑖) 

where 𝐱′𝑖 is the preprocessed feature vector for 
transaction 𝑖, and 𝐾 is the total number of trees, 
corresponding to the n_estimators parameter. The 
final fraud probability is then 𝑃(Fraud|𝐱′𝑖) = 𝜎(𝑦̂𝑖), 
where 𝜎(⋅) is the logistic function. 

The trees are built in an additive manner. At each 
iteration 𝑡, a new tree 𝑓𝑡 is trained to minimize the 
overall objective function, which includes a loss term 
and a regularization term: 

ℒ (𝑡) =∑𝑙

𝑛

𝑖=1

(𝑦𝑖 , 𝑦̂𝑖
(𝑡−1) + 𝑓𝑡(𝐱′𝑖)) + 𝛺(𝑓𝑡) 

Here, 𝑙(𝑦𝑖 , 𝑦̂𝑖) is the loss function measuring the 
error between the true label 𝑦𝑖 ∈ {0,1} and the 
prediction 𝑦̂𝑖. The regularization term, 𝛺(𝑓𝑡), 
penalizes the complexity of the newly added tree to 
prevent overfitting. 

Handling Class Imbalance The dataset exhibits a 
severe class imbalance, with fraudulent transactions 
(Is_Fraud = 1) representing a small minority of the 
data. To address this, we introduce a weighting 
mechanism directly into the loss function. A weight, 
𝑊𝑝𝑜𝑠, is applied to the loss for all positive class 

instances. This weight corresponds to the 
scale_pos_weight parameter in the XGBoost 
implementation and is calculated as the ratio of the 
number of negative class samples to positive class 
samples: 

𝑊𝑝𝑜𝑠 =
count(𝑦 = 0)

count(𝑦 = 1)
 

The objective function is thus modified to place a 
significantly higher penalty on misclassifying a 
fraudulent transaction compared to a legitimate one. 

Feature Space The feature vector 𝐱 for Layer 2 is 
more comprehensive than that of Layer 1. It 
incorporates a wide range of variables from 
layer2_numerical_features and 
layer2_categorical_features. These include not only 
transactional data but also features describing the 
cardholder’s history (Reported_Fraud_History_Count), 
merchant risk profiles (Historical_Fraud_Rate_Global), 
real-time velocity checks 
(CH_Count_Transactions_Last_1H), and explicit 
transaction verification results (AVS_Response_Code, 
CVV_Match_Result). Crucially, the anomaly score 
Layer1_Reconstruction_Error from the first layer is also 
included as a feature, allowing this supervised model 
to leverage the insights from the unsupervised 
screener. All features are preprocessed using the 
preprocessor_l2 pipeline, which applies StandardScaler 
to numerical features and OneHotEncoder to 
categorical ones. 

4.4. Layer 3: Billing Anomaly Detection and 
Classification 

The third layer of the system is a specialized two-
stage component designed to identify and categorize 
specific types of non-fraudulent, high-risk events, 
namely billing errors. This layer operates 
independently of the fraud detector to capture 
distinct patterns associated with operational 
discrepancies. 

Billing Error Detection with XGBoost The first 
stage employs a supervised binary classifier to 
determine the probability that a given transaction is 
a billing error. The model selected for this task is 
XGBoost. 

Model Formulation The XGBoost model 
constructs an ensemble of 𝐾 decision trees, where 𝐾 
is the n_estimators parameter. The final raw 
prediction score 𝑦̂𝑖 for a preprocessed input vector 𝐱′𝑖 
is the sum of the scores from each individual tree, 𝑓𝑘: 

𝑦̂𝑖 = ∑𝑓𝑘

𝐾

𝑘=1

(𝐱′𝑖) 

The model is trained in an additive fashion, where 
each new tree 𝑓𝑡 is trained to minimize the objective 
function, which balances a loss term and a 
regularization term 𝛺 to control model complexity: 

ℒ (𝑡) =∑𝑙

𝑛

𝑖=1

(𝑦𝑖 , 𝑦̂𝑖
(𝑡−1) + 𝑓𝑡(𝐱′𝑖)) + 𝛺(𝑓𝑡) 

where 𝑙(𝑦𝑖 , 𝑦̂𝑖) is the logistic loss function for 
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binary classification. 
Handling Class Imbalance To address the severe 

class imbalance of billing errors, a weighting 
parameter 𝑊𝑝𝑜𝑠 (scale_pos_weight) is incorporated into 

the loss function. This applies a greater penalty for 
misclassifying the minority (positive) class. Based on 
an automated hyperparameter search, the optimal 
value was determined to be: 

𝑊𝑝𝑜𝑠 = 2.82 

Billing Error Type Classification with Random 

Forest For transactions flagged as billing errors by 
the first stage, a second multi-class classifier is used 
to categorize the specific Billing_Error_Type. A 
Random Forest model was implemented for this 
purpose. 

Model Formulation A Random Forest is an 
ensemble of 𝐾 individual decision trees. Each tree is 
trained on a random bootstrap sample of the data. 
The final prediction for a transaction 𝐱′𝑖 is 
determined by a majority vote among all trees in the 
forest. Let 𝐶 be the set of possible error types (e.g., 
Duplicate_Charge, Unwanted_Subscription_Renewal). 
The predicted class 𝑦̂𝑖 is the one that receives the most 
votes: 

𝑦̂𝑖 = argmax
𝑐∈𝐶

∑𝕀

𝐾

𝑘=1

(𝑓𝑘(𝐱′𝑖) = 𝑐) 

where 𝑓𝑘(𝐱′𝑖) is the prediction of the 𝑘-th tree and 
𝕀(⋅) is the indicator function, which is 1 if the 
condition is true and 0 otherwise. 

Handling Class Imbalance To manage potential 
imbalances between different error types, the 
Random Forest is configured with 
class_weight='balanced'. This setting automatically 
assigns a weight 𝑤𝑐 to each class 𝑐 in the training 
process, which is inversely proportional to its 
frequency. The weight is calculated as: 

𝑤𝑐 =
𝑛samples

𝑛classes × 𝑛samples,𝑐
 

where 𝑛samples is the total number of training 

samples, 𝑛classes is the number of distinct error types, 
and 𝑛samples,𝑐 is the number of samples belonging to 

class 𝑐. This ensures the model gives equal 
importance to all error types, regardless of their 
prevalence. 

4.5. Layer 4: Meta-Learner for Final Risk Assessment 

The final layer of the Inteligent Credit Sentinel 
system is a decision and action engine, implemented 
as a meta-learner. The purpose of this layer is to 
synthesize the specialized outputs from the 
preceding three layers into a single, unified 
probability score that represents the overall risk of a 
transaction. This final score is then used to 

recommend concrete actions, such as approving, 
reviewing, or declining a transaction. 

Input Features and Unified Target The meta-
learner does not operate on the raw transaction data. 
Instead, its feature space is constructed from the 
outputs of the previous layers. The input feature 
vector for the meta-learner, denoted as 𝐱meta, is 
composed of: 

 The anomaly score from Layer 1 (𝐸(𝐱), 
Layer1_Reconstruction_Error). 

 The fraud probability from Layer 2 
(𝑃(Fraud|𝐱′), Layer2_Fraud_Probability). 

 The billing error probability from Layer 3 

(𝑃(Billing Error|𝐱′), 

Layer3_Billing_Error_Probability). 

 The original 
Transaction_Amount_Local_Currency is also 
included to provide context on the financial 
magnitude of the event. 

To train this model, a unified binary target 
variable, 𝑦meta (Meta_Target_High_Risk), is created. A 
transaction is considered a high-risk event (𝑦meta = 1) 
if it is either a confirmed fraud or a confirmed billing 
error. Formally: 

𝑦meta = (𝑦fraud = 1) ∨ (𝑦billing_error = 1) 

Model Formulation A Logistic Regression model 
is employed as the meta-learner due to its 
interpretability and efficiency. The model learns a set 
of coefficients, 𝐰, and a bias term, 𝑏, to map the input 
features to a final risk probability. The probability of 
a transaction being a high-risk event is modeled 
using the logistic (sigmoid) function 𝜎(⋅): 

𝑃(𝑦meta = 1|𝐱′meta) = 𝜎(𝐰𝑇𝐱′meta + 𝑏)

=
1

1 + 𝑒−(𝐰
𝑇𝐱′meta+𝑏)

 

where 𝐱′meta is the scaled meta-feature vector. The 
learned coefficients in 𝐰 directly correspond to the 
importance the meta-learner places on the output of 
each preceding layer when making its final decision. 

Handling Class Imbalance The unified target 
variable, 𝑦meta, is also imbalanced, as high-risk events 
are rare. To counteract this, the Logistic Regression 
model is configured with class_weight='balanced'. 
This setting adjusts the loss function by applying a 
weight, 𝑤𝑐, to each class 𝑐 that is inversely 
proportional to its frequency: 

𝑤𝑐 =
𝑛samples

𝑛classes × 𝑛samples,𝑐
 

where 𝑛samples is the total number of samples, 

𝑛classes is the number of classes (two in this case), and 
𝑛samples,𝑐 is the number of samples in class 𝑐. This 

ensures that the model does not become biased 
towards the majority “Not High Risk” class. 



298 MD TUHIN RANA et al. 
 

SCIENTIFIC CULTURE, Vol. 12, No 2.1, (2026), pp. 291-309 

5. RESULTS 

5.1. Layer 1: Results of Unsupervised Anomaly 
Screening 

The performance of the Layer 1 autoencoder as a 
broad-based anomaly screener was evaluated against 

two distinct types of adverse events: actual fraud and 
billing errors. The results, presented in Figure 1, 
demonstrate the model’s effectiveness in identifying 
transactions that deviate from normative patterns, 
particularly those associated with fraudulent 
activity. 

 
Figure 1: Anomaly Detection Performance Analysis of Layer 1. 

Figure 1A and 1B present the confusion matrices 
for the model’s anomaly predictions against the 
ground truth for fraud and billing errors, 
respectively. When evaluated against actual fraud 
(Figure 1A), the model successfully identified 88 
fraudulent transactions (True Positives) while failing 
to flag 136 (False Negatives). This corresponds to a 
recall of approximately 39% for fraudulent events. 
The model generated 38 False Positives by flagging 
legitimate transactions as anomalous. 

Conversely, the model was significantly less 
effective at identifying billing errors (Figure 1B). It 
correctly flagged only 9 such events while missing 
180, indicating that the patterns characterizing billing 
errors are less distinct from normal transactional 
behavior and are not well-captured by the 
autoencoder’s learned representation of “normality.” 

Figure 1C provides a comparative visualization of 
the reconstruction error distributions for true 

fraudulent events versus true billing errors. A 
distinct difference is observable: the median and 
interquartile range of reconstruction errors for 
fraudulent transactions are substantially higher than 
those for billing errors. This result strongly indicates 
that the autoencoder’s anomaly signal, quantified by 
the reconstruction error E(x), is a more potent 
indicator for fraud than for billing discrepancies. The 
model correctly perceives fraudulent activities as 
more significant deviations from the learned norm, 
thereby assigning them higher anomaly scores. 

Layer 1: Visualizing the Reconstruction Error 
Distribution To visualize the separability of normal 
and anomalous transactions, the distribution of the 
autoencoder’s reconstruction error, E(x), was plotted 
on both a linear and a logarithmic scale (Figure 2). 
This comparison is critical due to the severe class 
imbalance inherent in the dataset. 

 
Figure 2: Comparing Linear vs Logarithmic Scale for Error Distribution. 
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Figure 2A, which uses a standard linear scale for 
the y-axis (Count), effectively illustrates that the vast 
majority of transactions are normal, exhibiting a 
reconstruction error very close to zero. However, this 
representation completely obscures the distribution 
of the anomalous class, as their count is orders of 
magnitude smaller than that of the normal class, 
rendering them invisible on this scale. 

In contrast, Figure 2B utilizes a logarithmic scale 
for the y-axis. This transformation compresses the 
high counts of the normal transactions, thereby 
making the distribution of the far less frequent 
anomalous transactions clearly visible. This view is 
essential as it confirms that transactions with higher 
reconstruction errors are predominantly fraudulent 

events. The logarithmic plot demonstrates a 
discernible, albeit overlapping, separation between 
the error distributions of the two classes, reinforcing 
the utility of the reconstruction error as a valid 
anomaly signal. The optimal threshold, derived from 
the Precision-Recall curve, is shown to effectively 
partition these two distributions. 

Layer 1: Quantitative Performance Evaluation To 
quantitatively assess the performance of the 
autoencoder as a fraud detector, the Precision-Recall 
(PR) and Receiver Operating Characteristic (ROC) 
curves were generated, as shown in Figure 3. These 
metrics are essential for evaluating classifier 
performance on imbalanced datasets. 

 
Figure 3: Model Performance Curves. 

The Precision-Recall curve (Figure 3, Left) 
illustrates the trade-off between the model’s 
precision (the fraction of flagged anomalies that are 
actual frauds) and its recall (the fraction of actual 
frauds that are correctly flagged). The Area Under 
the Curve (PR AUC) is 0.43. A random or no-skill 
classifier would achieve a PR AUC equivalent to the 
prevalence of the positive class in the dataset (a value 
significantly less than 0.43), indicating that the 
model’s performance is substantially better than 
baseline. The “Chosen Threshold,” marked in red, 
represents the operating point selected to balance 
precision and recall, achieving a recall of 
approximately 0.39 while maintaining a precision of 
around 0.70. 

The ROC curve (Figure 3, Right) plots the True 
Positive Rate (Recall) against the False Positive Rate 
across all possible thresholds. The Area Under the 
ROC Curve (ROC AUC) is 0.82. A score of 0.5 
represents a no-skill classifier, while a score of 1.0 
represents a perfect classifier. The achieved AUC of 
0.82 signifies a strong discriminative ability, 

indicating that there is an 82% probability that the 
model will rank a randomly chosen fraudulent 
transaction with a higher reconstruction error than a 
randomly chosen legitimate transaction. 

Layer 1: Visualizing the Reconstruction 
Mechanism To provide a qualitative and intuitive 
understanding of the autoencoder’s behavior, the 
original and reconstructed feature vectors were 
visualized in a two-dimensional feature space. Figure 
4 illustrates this comparison for two representative 
scaled features: Transaction_Amount_Local_Currency 
and CH_Avg_Amount. 

The left panel of Figure 4 displays the results for 
normal transactions. The green points, representing 
the reconstructed data (x ̂'), form a dense cloud that 
almost perfectly overlaps with the blue points, 
representing the original preprocessed data (x'). This 
tight correspondence visually confirms that the 
model has effectively learned the underlying 
manifold of normal data, resulting in a low 
reconstruction error for legitimate transactions. 

In contrast, the right panel displays the results for 
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fraudulent transactions. A significant divergence is 
evident between the original fraudulent data points 
(blue) and their reconstructed counterparts (red). The 
reconstructed points are often displaced from their 
original locations, indicating the model’s inability to 
accurately reproduce these anomalous inputs. This 

displacement visually represents a high 
reconstruction error, E(x), which is the fundamental 
signal used by this layer to flag transactions as 
potential anomalies. This visualization provides a 
clear, mechanistic validation of the autoencoder’s 
utility for this task. 

 
Figure 4: Visualizing Reconstruction Error on Scaled Features. 

5.2. Layer 2: Results of Supervised Fraud 
Classification 

The performance of the Layer 2 XGBoost classifier 
was evaluated using Precision-Recall (PR) and 

Receiver Operating Characteristic (ROC) curves, 
presented in Figure 5. These metrics assess the 
model’s ability to effectively distinguish between 
legitimate and fraudulent transactions. 

 
Figure 5: Core Model Performance curves for Fraud Detection. 

The PR curve (Figure 5A) is particularly 
informative for imbalanced classification tasks. The 
model achieves a PR Area Under the Curve (AUC) of 
0.69. This score represents a significant improvement 
over a random baseline and demonstrates the 
model’s capacity to maintain a high level of precision 
across a substantial range of recall values. The 

curve’s shape indicates that the model can 
successfully identify a large fraction of fraudulent 
transactions while minimizing the rate of false 
positive alarms. 

The ROC curve (Figure 5B) further underscores 
the model’s exceptional discriminative power. The 
model attains a ROC AUC of 0.96, a value 
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approaching a perfect score of 1.0. This indicates a 
very high probability that the model will correctly 
assign a higher fraud likelihood score to a randomly 
selected fraudulent transaction than to a randomly 
selected legitimate one. The steepness of the curve 
towards the top-left corner signifies that the model 
achieves a high True Positive Rate (Recall) while 
incurring a very low False Positive Rate, confirming 

its robustness as a fraud likelihood estimator. 
Layer 2: Classification Performance and 

Probability Analysis The detailed classification 
performance of the Layer 2 XGBoost model is 
presented in Figure 6. This includes both the final 
classification decisions and the underlying 
probability distributions that inform them. 

 
Figure 6: Classification Results and Probability Distribution. 

The confusion matrix (Figure 6A) quantifies the 
model’s performance at the default 0.5 probability 
threshold. The model correctly identified 178 
fraudulent transactions (True Positives) while failing 
to detect 46 (False Negatives), corresponding to a 
high recall of approximately 79.5%. The model 
incorrectly flagged 397 legitimate transactions (False 
Positives), which reflects the trade-off made by the 
scale_pos_weight parameter to prioritize the capture 
of fraudulent events. 

The histogram of predicted probabilities (Figure 
6B) provides a more granular view of the model’s 
behavior. It illustrates a clear and effective separation 
between the two classes. The legitimate transactions 

(blue distribution) are overwhelmingly assigned a 
fraud probability near zero. In contrast, the 
fraudulent transactions (orange distribution) are 
assigned a much wider range of scores, with a 
significant concentration at higher probabilities. This 
distinct separation between the probability 
distributions for the two classes is the underlying 
reason for the model’s strong discriminative power, 
as evidenced by its high ROC AUC score. 

Layer 2: Model Interpretability and Calibration 
To ensure the model’s decisions are transparent and 
its probabilistic outputs are reliable, an analysis of 
feature importance and model calibration was 
performed (Figure 7). 

 
Figure 7: Model Interpretation and Reliability. 
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The feature importance plot (Figure 7A) reveals 
the key drivers of the model’s predictions. The results 
align with established domain knowledge. The most 
influential features are CVV_Match_Result_N (CVV 
does not match) and CVV_Match_Result_U (CVV 
check was not performed or issuer is not certified), 
followed by AVS_Response_Code_nan (missing 
Address Verification System response). These 
features are direct indicators of transaction risk. 
Other significant features include Is_Card_Present 
and various Point_of_Sale_Entry_Mode categories, 
highlighting the importance of the transaction’s 
physical context in assessing its legitimacy. 

The calibration curve (Figure 7B) evaluates the 
reliability of the model’s predicted probabilities. A 
perfectly calibrated model would follow the diagonal 
dashed line. The curve for the XGBoost model lies 
below this diagonal, indicating that the model is 
somewhat under-confident; for instance, when the 

model predicts a mean probability of 0.8, the actual 
fraction of fraudulent transactions in that bin is closer 
to 0.9. However, the curve is monotonic, which is a 
crucial positive attribute. This demonstrates that an 
increase in the model’s predicted probability 
consistently corresponds to a true increase in the 
likelihood of fraud, confirming that the probability 
scores are a reliable ranking metric for risk. 

5.3. Layer 3: Classification Performance and 
Reliability 

The performance of the final, optimized XGBoost 
model for billing error detection is summarized in 
Figure 8. The analysis includes the model’s 
classification accuracy via a confusion matrix and the 
reliability of its probabilistic outputs via a calibration 
curve. 

 
Figure 8: Classification Result and Model Reliability. 

The confusion matrix (Figure 8A) for the final 
Layer 3 model demonstrates a highly practical and 
well-balanced performance. The model correctly 
identified 83 billing errors (True Positives) while 
missing 106 (False Negatives), resulting in a recall of 
approximately 44%. Critically, the model generated 
only 5 False Positives, leading to an exceptionally 
high precision of 94%. This indicates that when the 
model flags a transaction as a billing error, the alert 
is highly reliable, minimizing the operational cost of 
reviewing false alarms. 

The calibration curve (Figure 8B) assesses the 
trustworthiness of the model’s probability scores. 
The curve for the Layer 3 model exhibits a sigmoidal 
shape relative to the “Perfectly Calibrated” diagonal. 

This indicates the model is slightly under-confident 
for low-probability predictions and slightly over-
confident for high-probability predictions. However, 
the curve is strongly monotonic, showing a clear 
positive correlation between the predicted 
probability and the actual fraction of positive cases. 
This confirms that the model’s probability scores are 
effective for ranking transactions by their likelihood 
of being a billing error, even if they are not perfectly 
calibrated. 

Layer 3: Quantitative Performance Metrics The 
quantitative performance of the optimized Layer 3 
model is further detailed by the Precision-Recall (PR) 
and Receiver Operating Characteristic (ROC) curves, 
presented in Figure 9. 
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Figure 9: Core Model Performance for Billing Error Detection. 

The PR curve (Figure 9A) for the billing error 
detector achieves an Area Under the Curve (AUC) of 
0.59. This result is substantially better than a random 
baseline and demonstrates the model’s effectiveness. 
The curve illustrates the inherent trade-off in the 
detection task; the model can maintain very high 
precision at recall levels below approximately 0.4, 
after which precision begins to decline more rapidly 
as the model attempts to identify a larger fraction of 
the positive class. This performance is indicative of a 
practical classifier that can be tuned to prioritize 
either high alert reliability or comprehensive 
detection depending on the operational 
requirements. 

The ROC curve (Figure 9B) confirms the model’s 

strong discriminative capabilities with a ROC AUC 
of 0.94. This high value indicates that the model is 
very effective at ranking transactions, with a 94% 
probability of assigning a higher risk score to a 
random billing error than to a random legitimate 
transaction. The sharp ascent of the curve toward the 
top-left corner demonstrates that the model achieves 
a high True Positive Rate (Recall) while maintaining 
a low False Positive Rate, solidifying its utility as a 
reliable detector for billing anomalies. 

Layer 3: Probability Distribution and Feature 
Analysis Further insight into the behavior of the 
Layer 3 model is provided by an analysis of its 
predicted probability distribution and feature 
importances, as shown in Figure 10. 

 
Figure 10: Probability Distribution and Key Features.

The distribution of predicted probabilities (Figure 
10A) confirms the model’s conservative nature, 
which is appropriate for a high-precision task. The 
vast majority of transactions are assigned a billing 
error probability very close to zero, aligning with the 

low prevalence of billing errors in the dataset. The 
small number of transactions that receive a higher 
probability score are the ones targeted for review, 
and as established by the confusion matrix, these 
high-probability predictions are highly reliable. 
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The feature importance plot (Figure 10B) 
identifies the primary drivers of the model’s 
decisions. The most significant feature is 
CVV_Match_Result_nan, indicating that transactions 
where the CVV check was not performed or was 
unavailable are strong indicators of potential billing 
discrepancies. Other key features include 
Time_Since_CH_Last_Transaction_Overall_Min and 
Point_of_Sale_Entry_Mode_E-commerce, suggesting 

that the timing of transactions and the context of 
online purchases are highly relevant for 
distinguishing billing errors. The importance of 
various merchant category codes further underscores 
the model’s ability to learn patterns associated with 
specific types of merchants. 

Layer 3: Billing Error Type Classification 
Results 

Table 1: Classification Report of Random Forest Model to Determine Billing Error Type. 
Class Precision Recall F1-Score Support 

Duplicate_Charge 1.00 0.96 0.98 23 

Unwanted_Subscription_Renewal 0.99 1.00 1.00 166 

Accuracy   0.99 189 

Macro Avg 1.00 0.98 0.99 189 

Weighted Avg 0.99 0.99 0.99 189 

Furthermore, the second-stage Random Forest 
classifier, tasked with categorizing the specific 
Billing_Error_Type for transactions already flagged 
by the binary detector, demonstrated exceptional 
performance. On the test set of confirmed billing 
errors, this multi-class model achieved an overall 
accuracy of 99%. As detailed in Table 1, it was highly 
effective at distinguishing between the two primary 
error types, achieving 1.00 precision and 0.96 recall 
for Duplicate_Charge, and 0.99 precision and 1.00 
recall for Unwanted_Subscription_Renewal. This 
high-performing classification stage, with a weighted 
F1-score of 0.99, confirms the system’s capability to 

not only detect billing errors but also to accurately 
classify their nature for effective operational 
handling. 

5.4. Layer 4: Meta-Learner Performance Evaluation 

The overall performance of the Layer 4 meta-
learner, which provides the final system-wide risk 
assessment, is evaluated using the PR and ROC 
curves shown in Figure 11. These curves are 
generated based on the model’s ability to predict the 
unified Meta_Target_High_Risk target. 

 
Figure 11: Meta-Learner Performance Curves. 

The PR curve (Figure 11A) for the meta-learner 
achieves an AUC of 0.62. This strong performance 
indicates that the synthesized risk score is highly 
effective. The shape of the curve demonstrates that 
the model can identify over 30% of all high-risk 

events (recall) while maintaining nearly perfect 
precision. This highlights the meta-learner’s ability to 
successfully combine the signals from the preceding 
layers to produce a highly reliable final risk score. 

The ROC curve (Figure 11B) further validates the 
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final model’s effectiveness, with a ROC AUC of 0.94. 
This near-perfect score signifies an excellent capacity 
to discriminate between high-risk and benign 
transactions. The steep initial ascent of the curve 
demonstrates that the meta-learner can achieve a 
very high True Positive Rate while maintaining a 
minimal False Positive Rate, confirming that the 
multi-layered architecture successfully culminates in 

a robust and accurate final decision engine. 
Layer 4: Final Classification Performance and 

Interpretability The final performance and 
interpretability of the meta-learner are detailed in 
Figure 12, which presents the confusion matrix for 
the unified high-risk target and the feature 
importances that drive the final decision. 

 
Figure 12: Meta-Learner Classification and Feature Analysis. 

The confusion matrix (Figure 12A) for the 
Meta_Target_High_Risk demonstrates the system’s 
overall effectiveness. The model correctly identifies 
164 high-risk events (True Positives) while missing 
only 35 (False Negatives). This corresponds to a final 
system-wide recall of approximately 82.4%, 
indicating that the multi-layered architecture is 
highly successful at its primary goal of capturing the 
vast majority of adverse events, including both fraud 
and billing errors. 

The feature importance plot (Figure 12B) provides 
crucial insight into how the meta-learner synthesizes 
the signals from the preceding layers. The most 
influential feature is the Layer1_Reconstruction_Error, 
confirming the significant value of the initial 
unsupervised anomaly detection layer in identifying 
transactions that deviate from the norm. The 
Layer3_Billing_Error_Probability and 
Layer2_Fraud_Probability also hold substantial 
positive coefficients, indicating that the meta-learner 
correctly associates higher probabilities from these 
specialist models with increased overall risk. This 
analysis confirms that the meta-learner has 
successfully learned a logical and effective strategy 
for combining the outputs of the specialist models 
into a reliable, final risk assessment. 

Layer 4: Actionable Insights and Risk 
Distribution The final output of the Inteligent Credit 

Sentinel system is a set of recommended actions 
derived from the meta-learner’s risk probability 
scores. Figure 13 illustrates the distribution of these 
actions and the underlying risk scores that 
determined them. 

The bar chart of suggested actions (Figure 13A) 
demonstrates the system’s operational output. Based 
on predefined risk thresholds (0.4 for review, 0.7 for 
decline), the vast majority of transactions are 
categorized as 'Approve', which is expected in a real-
world scenario. A smaller, manageable number of 
transactions are escalated for 'Flag_For_Review' or 
immediate 'Decline_Or_StepUp', showcasing the 
system’s ability to translate probabilistic outputs into 
a practical and efficient workflow. 

The histogram of the final risk scores (Figure 13B) 
provides a compelling visualization of the model’s 
confidence. The distribution is distinctly bimodal, 
with a large peak of low-risk scores concentrated 
near zero and a smaller, but clearly defined, peak of 
high-risk scores concentrated near 1.0. This 
separation indicates that the meta-learner is highly 
decisive, with very few transactions falling into an 
ambiguous intermediate-risk category. The plot 
confirms that the action thresholds are well-
positioned to effectively segment the low-risk and 
high-risk populations, providing a strong 
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justification for the final decisioning logic.  

 
Figure 13: Final Decisions and Underlaying Risk Distribution. 

Layer 4: Case Study of the Decision Engine To 
demonstrate the end-to-end functionality of the 
multi-layered system, Table 1 presents a selection of 
outputs from the Layer 4 meta-learner. The table 
showcases how the final risk probability and 
suggested action are derived from the inputs of the 
preceding layers. 

The examples illustrate the system’s behavior on 
typical, low-risk transactions, where low 
probabilities from all layers result in a low final risk 
score and an 'Approve' action. The most illustrative 
case is that of transaction 67513, a confirmed 
fraudulent event. For this transaction, the Layer 1 
anomaly score and Layer 3 billing probability are 
both low. However, the Layer 2 fraud detector 
assigned a very high fraud probability of 0.99243. 

The meta-learner correctly synthesized these 
inputs, assigning the highest importance to the 
strong signal from the fraud detection layer. 
Consequently, it produced a final risk probability of 
0.95195, leading to the correct suggested action of 
'Decline_Or_StepUp'. This case study effectively 
demonstrates the core strength of the multi-layered 
architecture: the ability of the final decision engine to 
intelligently weigh the evidence from different 
specialist models to arrive at an accurate and 
actionable conclusion. 

6. DISCUSSION 

The development and evaluation of the Inteligent 
Credit Sentinel system reveal several key insights into 
the effectiveness of a multi-layered architecture for 
detecting diverse financial transaction risks. This 
discussion synthesizes the findings from the 
unsupervised anomaly screener, the specialized 

supervised classifiers, and the final meta-learner, 
focusing on their comparative performance and the 
practical implications of the hierarchical design. The 
results confirm that a modular, multi-faceted 
approach not only enhances detection accuracy but 
also creates a more interpretable and operationally 
efficient framework for managing risk. 

6.1. The Synergy of Unsupervised and Supervised 
Learning 

A primary finding of this study is the distinct but 
complementary roles of unsupervised and 
supervised learning methodologies (Zimbe et al., 
2025). The Layer 1 autoencoder established its utility 
as a broad-based anomaly screener, successfully 
learning a representation of normative behavior to 
flag transactions that deviated from the norm (Nettey 
& Ansong, 2025). It demonstrated a foundational 
ability to identify fraudulent events without any 
prior labels (Nettey & Ansong, 2025). However, its 
performance was significantly surpassed by the 
Layer 2 supervised XGBoost model, which was 
trained specifically on fraud labels and achieved a 
much higher recall (Zimbe et al., 2025). This contrast 
underscores a fundamental principle: while 
unsupervised methods are invaluable for detecting 
novel anomalies (Zimbe et al., 2025), supervised 
models achieve superior performance on well-
defined targets (Zimbe et al., 2025). The true synergy, 
however, was revealed in the final Layer 4 meta-
learner (Zimbe et al., 2025), where the Layer 1 
reconstruction error emerged as the single most 
important feature for the final risk decision. This 
demonstrates that the unsupervised layer provided a 
powerful, overarching context of "abnormality" that, 
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when combined with the specific insights of the 
supervised layers (Zimbe et al., 2025), created a more 
robust and effective final model than any single 
component could achieve on its own (Nettey & 
Ansong, 2025). 

6.2. Deconstructing Risk: The Divergent Signatures 
of Fraud and Billing Errors 

The investigation revealed a clear disparity in the 
“detectability” of fraudulent transactions versus 
billing errors, highlighting that not all risks present 
equally strong signals. The Layer 2 fraud model 
attained an exceptional ROC AUC of 0.96, driven by 
features with clear, unambiguous links to fraudulent 
activity, such as failed CVV and AVS checks. These 
“smoking gun” indicators allowed the model to 
easily and confidently separate fraud from legitimate 
transactions. In contrast, the Layer 3 billing error 
detector required extensive feature expansion and 
tuning to achieve its strong final performance. Its key 
features were more subtle and circumstantial, relying 
on transaction timing and merchant-specific history. 
This suggests that billing errors have a more 
ambiguous signature that can closely resemble 
normal customer behavior, making them an 
inherently more challenging detection problem. This 
finding validates the architectural decision to 
dedicate a separate, highly-tuned layer to this 
specific challenge rather than grouping it with the 
more distinct patterns of fraud. (Zimbe et al., 2025) 

6.3. From Probabilities to Practicality: The Role 
of Model Tuning and Calibration 

This research underscores the critical importance 
of iterative model tuning in transforming a 
theoretically powerful model into a practically useful 
one. The initial supervised models, particularly for 
the rare billing error class, were not immediately 
effective despite strong underlying metrics like a 
high ROC AUC. Achieving a balance between 
capturing rare events (recall) and minimizing false 
alarms (precision) required a rigorous, data-driven 
tuning process. The automated hyperparameter 
search for the Layer 3 model, which identified an 
optimal scale_pos_weight of 2.82, was instrumental. 
This single tweak transformed the model from a 
high-recall but impractical detector into a well-
balanced classifier with exceptional 94% precision. 
This journey from a raw model to a refined one 
highlights that for imbalanced classification 
problems, the process of navigating the precision-
recall trade-off through careful hyperparameter 
optimization is as important as the initial choice of 
algorithm itself. (Zimbe et al., 2025) 

6.4. The Meta-Learner as an Intelligent Arbiter 

The success of the Layer 4 meta-learner 
demonstrates the core strength of the multi-layered 
architecture: the ability to synthesize diverse, 
specialized signals into a single, superior decision 
metric. The final model achieved a remarkable 
system-wide recall of approximately 82.4% for the 
unified “High-Risk Event” target, confirming its 
effectiveness. The feature importance analysis 
revealed that the meta-learner did not simply 
average the inputs but learned to weigh them 
intelligently. Its reliance on the Layer 1 anomaly 
score as the most critical feature suggests it learned 
to prioritize the general signal of “weirdness” as a 
primary indicator of risk, which it then refined using 
the more specific fraud and billing error 
probabilities. Furthermore, the bimodal distribution 
of its final risk scores—with clear peaks at very low 
and very high risk—proves that the final engine is 
highly decisive, avoiding the ambiguity that can 
plague monolithic systems and providing a clear 
basis for action. 

6.5. A Hierarchical Architecture as a Blueprint 
for Operational Efficiency 

Ultimately, the Inteligent Credit Sentinel system 
serves as a compelling blueprint for a practical and 
efficient risk management workflow. The tiered 
structure mirrors a sophisticated human-led 
operational process: a low-cost, automated initial 
screening (Layer 1) filters the vast majority of 
transactions, followed by analysis from dedicated 
experts (Layers 2 and 3), with a final “manager” 
(Layer 4) making an evidence-based decision. This 
hierarchical approach is inherently efficient, 
ensuring that the most intensive scrutiny is reserved 
for the small subset of transactions that truly warrant 
it. By translating the final, confident risk scores into 
concrete, triaged actions—Approve, Flag_For_Review, 
and Decline_Or_StepUp—the system provides a clear, 
automated, and interpretable pathway from data to 
decision, representing a robust and scalable 
paradigm for modern financial security. 

7. CONCLUSION 

The challenge of securing digital transactions in 
an era of ever-evolving threats demands a paradigm 
shift away from singular, monolithic defenses 
toward more dynamic, intelligent, and multi-faceted 
systems. This research confronted this challenge by 
proposing and validating the Inteligent Credit 
Sentinel, a novel four-layered architecture designed 
to deconstruct and analyze transaction risk with a 
depth and specificity that a single model cannot 
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achieve. By treating different risk types not as a 
singular problem but as distinct challenges requiring 
specialized expertise, we have demonstrated a path 
to a more robust and efficient security posture. 

The journey through the layers of the Sentinel has 
yielded significant insights. We confirmed that an 
unsupervised autoencoder can serve as an effective 
first-line screener, identifying general abnormality 
and providing a crucial, high-level context that 
proved indispensable to the final decision engine. We 
further demonstrated that specialized, supervised 
XGBoost models, when meticulously tuned to 
navigate the critical trade-off between precision and 
recall, can achieve exceptional performance in 
detecting the distinct signatures of both overt fraud 
and subtle billing errors. The true success of the 
architecture, however, was realized in the final meta-

learner, which acted not as a simple aggregator but 
as an intelligent arbiter, learning to weigh the 
evidence from each preceding layer to forge a single, 
confident, and highly accurate risk assessment. 

Ultimately, the Inteligent Credit Sentinel system 
serves as a compelling blueprint for a new generation 
of financial security systems. It successfully 
translates a complex hierarchy of probabilistic 
outputs into a clear, triaged, and actionable 
workflow, proving that a modular, multi-layered 
approach can deliver a solution that is at once 
powerful in its accuracy, elegant in its design, and 
practical in its application. The principles 
demonstrated herein offer a promising and scalable 
framework for building the resilient financial 
ecosystems of the future. 
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