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ABSTRACT

The proliferation of mobile banking has been accompanied by a surge in sophisticated financial fraud,
necessitating detection systems that go beyond traditional methods. This paper designs and validates a multi-
faceted, hybrid machine learning framework that synergizes behavioral biometrics (e.g., typing speed, swipe
patterns) with transactional data (e.g., amount, geolocation) for high-accuracy fraud detection. We evaluate
the progression of models, demonstrating that while unsupervised autoencoders are effective at profiling
normal behavior, they fail to detect over 65% of fraudulent activities. Supervised Long Short-Term Memory
(LSTM) networks, capturing temporal sequences, significantly improve performance, achieving fraud recall
rates as high as 97%. However, gradient-boosting models (LightGBM and XGBoost) yield the most balanced
standalone performance, with 98% recall and 94% precision. Feature importance analysis from these models
confirms that the framework's predictive power is derived from a hybrid of both behavioral and transactional
features. The framework culminates in a stacked ensemble model that optimizes the precision-recall trade-off,
achieving 97% accuracy, 97% fraud recall, and 95% fraud precision. This final model registers the lowest false
positive rate, presenting a robust, reliable, and deployable solution that maximizes fraud capture while
minimizing unnecessary friction for legitimate users.
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1. INTRODUCTION

The convergence of wireless communication,
smartphones, and banking infrastructure has
fostered the digital payment environment that has
been  instinctively replacing  conventional
transactions by cash. As technology is rapidly
developing, there has been a remarkable shift in the
transaction method to cashless payment. Moreover,
the Governments all over the world are actively
encouraging this shift, yet developing and emerging
markets are not exempt from that (Nguyen & Huynh,
2018; Namweli & Magali, 2018; Gupta et al., 2020;
Hung et al.,, 2021; Lonkani et al., 2020; Malaquias et
al., 2021; Omigie et al., 2020; Wamba et al., 2021).
While, cash remains widely accepted along with
familiar due to its longstanding nature, digital
payments offer greater convenience by reduced time
and effort in the transactions process (Hassan, et al.,
2021; Shree, et al, 2021).

E-payment refers to the use of electronic networks
throughtransferring money during commercial
transactions (Al-Sabaawi, et al., 2023; Nguyen &
Huynh, 2018, Ming-Yen Teoh et al, 2013).
Masihuddin et al. (2017) depicts, it involves
converting cash into digital form between buyers and
sellers using electronic technologies.However, the
terms e-payment methods, digital payments, and
online payments are often used interchangeably, as
they all refer to the use of electronic technologies to
transfer money in commercial transactions
(Arjunwadkar, 2018;).Electronic payment
technologies provide more than just ease of use—
they help businesses reach more customers, reduce
cash-handling expenses, and bring informal
economic activities into the formal system, leading to
increased tax revenue for  governments.
Additionally, online payment systems offer
innovative features that benefit both customers and
banks by eliminating the challenges of traditional
banking methods, such as the need to visit a bank for
withdrawals or deposits, by reducing delays,
minimizing miscommunication and so on (Al-
Okaily, et al, 2024; Khando, et al, 2022; Al-Okaily et
al., 2020).

The digital commerce landscape is rapidly
transforming, with online transactions becoming a
dominant mode of exchange due to the unparalleled
convenience and global accessibility they provide.
This growing dependence on electronic payment
systems has simultaneously created opportunities for
cybercriminals to exploit users’ trust and system
vulnerabilities (Vimal et al., 2021). Besides, various
benefits associated with online payment systems also
face notable limitations and challenges. A key

concern among users is the fear of security breaches,
which could lead to financial losses. Additionally,
risks of fraud and cyberattacks, along with
insufficient protection mechanisms, could bring
decline in consumer trust and usage of digital
payment technologies (Khando, et al, 2022b; Al-Qadji,
2018; Kabir, et al, 2015)

Online payment fraud encompasses a broad
spectrum of deceptive tactics aimed at unlawfully
acquiring funds or goods through digital platforms
(Sun et al., 2021). These fraudulent actions include
account hijacking, phishing attacks, synthetic
identity creation, and payment card misuse, all of
which capitalize on weaknesses within the digital
transaction ecosystem (Strelcenia & Prakoonwit,
2023). Among the most prevalent methods is identity
theft, wherein criminals obtain sensitive personal
information—such as banking credentials or social
identification numbers —to impersonate individuals
and execute unauthorized transactions, often
resulting in severe financial and reputational
consequences for the victims (Pan, 2024).

Understanding these evolving fraud
methodologies is crucial for developing robust
countermeasures and enhancing the security posture
of online transactional environments (Mehana &
Pireva, 2020). Fraudsters execute online transaction
fraud through various sophisticated methods,
leveraging vulnerabilities in payment systems and
exploiting human factors to gain unauthorized access
to financial resources (Sadgali et al., 2019). The rapid
expansion of e-commerce has unfortunately
provided fertile ground for these illicit activities,
making it imperative for financial institutions to
implement automated deterrent mechanisms to
safeguard against the surging tide of fraudulent
credit card transactions (Forough & Momtazi, 2020).
The challenge in combating these illicit activities lies
in the need for real-time detection and prevention, as
transactions are often processed instantaneously
(Chalapathy & Chawla, 2019).Given that online
transactions do not necessitate the physical presence
of the cardholder, cybercriminals can readily
impersonate  legitimate = users to  conduct
unauthorized transactions, thereby exacerbating the
challenge of fraud detection (Manek et al., 2019). The
sheer volume and complexity of data generated by
digital payment systems also render traditional fraud
detection methods inadequate, necessitating
advanced computational approaches (Chang et al.,
2024). The dynamic nature of fraudulent behavior,
which constantly evolves to evade detection,
presents a formidable challenge for static fraud
detection systems (Carcillo et al., 2019; Rzayeva &
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Malekzadeh,  2022). This necessitates the
development of robust, real-time fraud detection
systems capable of analyzing vast datasets for
anomalies and emerging patterns (Tran, 2022). One
effective approach to combatting this challenge
involves employing machine learning algorithms,
which can analyze vast datasets to identify
fraudulent transactions by discerning subtle patterns
and anomalies that human analysts might overlook
(Dornadula & Geetha, 2019). These models can use
historical data to distinguish between legitimate and
fraudulent transactions, significantly improving
detection accuracy (Bello & Olufemi,
2024).Therefore, this research aims to identify the
shift underscoring the sophisticated fraud detection
systems of mobile banking throughanalyzing
transaction patterns as well as behavioral anomalies
to identify suspicious activities in real-time.

2. LITERATURE REVIEW

The advancement of global communication and
technological infrastructure has, regrettably, been
accompanied by a corresponding increase in
fraudulent activities, thereby the urgent need for
robust fraud detection strategies gets the importance.
Fraud may be addressed either through proactive
prevention or detection after the occurrence of illicit
activity  (Alkhateeb & Maolood, 2019). The
identification of fraudulent transactions commonly
involves the examination of transactional data to
recognize irregular or suspicious behavioral patterns
(Tran, 2022). Although digital payment systems offer
substantial convenience, their widespread adoption
has simultaneously escalated the prevalence of
online fraud, primarily due to the overlapping
behavioral characteristics shared between genuine
and deceptive transactions (Keskenler et al., 2021).As
Fintech operates on the existing IT infrastructure, it
remains vulnerable to exploitation through targeted
fraudulent activities. Detecting such threats poses
significant technical challenges. To address this, the
industry increasingly employs Machine Learning
(ML) techniques, including anomaly detection, to
automatically identify suspicious patterns. ML
methods such as learning algorithms, statistical
models, and artificial neural networks (ANN) are
used to analyze data and inform effective fraud
prevention strategies (Khando, et al, 2022b).

There are many ML methods used in the literature
to detect fraud transaction in online platforms-such
as Logistic Regression, K-Nearest Neighbors,
Decision Tree, Naive Bayes, Random Forest,
Gradient Boosting Machines, Light Gradient
Boosting Machine, Extreme Gradient Boosting, and

Long Short Term Model (Dileep, et al, 2021; Guezzaz,
et al, 2021, Gupta, et al, 2021; Hancock &
Khoshgoftaar, 2021; Itoo, et al, 2021, Jemima
Jebaseeli, et al, 2021; Owolafe, et al, 2021; Mishra, K.
N., & Pandey, 2021; Jan, 2021; Benchaji, et al, 2021;
Vassallo, et al, 2021; Zarezadeh, et al, 2021; Alfaiz &
Fati, 2022; Aslam, et al, 2022;Aziz, et al, 2022; Chang,
etal., 2022; Zhang , 2022; Aburbeian & Ashgqar, 2023;
Ali, et al, 2023; Douiba, et al, 2023; Du, et al, 2023;
Hajek, et al, 2023; Naeem, et al, 2023; Ugale &
Midhunchakkaravarthy, 2023; Vishwakarma &
Kesswani, 2023, Khalid, et al, 2024; Mehdary, et al,
2024).

In order to determine the best three models for
detecting credit card fraud, Alfaiz et al. (2022) used
nine Machine Learning Algorithms in the first stage
to test their performance. In both phases, each model
assessed using the F1-Score, Accuracy, Recall,
Precision, and Area under the Receiver Operating
Characteristic Curve (AUC), AIIKNN-CatBoost was
contrasted with earlier research using the same
dataset and comparable methodologies. AIIKNN-
CatBoost did, in fact, performed better than earlier
models in terms of F1-Score (87.40%), AUC (97.94%),
and Recall (95.91%).Chang et al. (2022) evaluated
various Machine Learning Algorithms—such as
logistic ~ regression, decision tree, k-nearest
neighbours, random forest, and autoencoder—to
create an effective and stable model for fraud
detection platforms suitable for Industry 0.4. The
Results indicated from the random forest and logistic
regression surpassed other techniques as all the
models that could achieve more than 96% accuracy,
81% sensitivity, and 97% specificityin most of the
cases, the Area Under the Receiver Operating Curves
(AUROC) values of the used model are higher than
0.9. The research done by Ileberi, et al (2022) employs
a genetic algorithm-based feature selection technique
to identify the most significant features for credit
card fraud detection. It integrates various machine
learning classifiers, such as Decision Tree, Random
Forest, Logistic Regression, Artificial Neural
Network, and Naive Bayes. The findings indicated
that this proposed method surpassed existing
systems in fraud detection performance.
Additionally, the study reveals that using the genetic
algorithm for feature selection enhances the accuracy
of the machine learning models.

Xu and Liu (2018) applied an optimized SVM on
commercial bank datasets for online credit card
fraud, showing its effectiveness over other models.
Mareeswari and Gunasekaran (2016) integrated SVM
with spike detection for credit card fraud,
outperforming prior approachesCarneiro et al. (2015)

SCIENTIFIC CULTURE, Vol. 12, No 2.1, (2026), pp. 271-290



274

MD TUHIN RANA et al.

that proposed a hybrid method combining Hidden
Markov Models (HMM) with Genetic Algorithms
(GA) for credit card fraud detection. In this approach,
HMM used to model historical transaction patterns,
while GA optimizes threshold values for clustering
and classifying new transactions. The study
demonstrated that this method enhances the
accuracy of fraud detection. Similarly, Mhamane
(2012) implemented a comparable technique for
detecting fraud in internet banking, emphasizing the
accurate identification of genuine users and the
monitoring of anomalous behaviors.On the other
hand, the K-Nearest Neighbors (KNN) algorithm is a
widely used data mining technique for both
classification and regression tasks. It operates on a
simple principle: to make a prediction for a given
data point. The algorithm identifies the k closest data
points in the feature space and bases the prediction
on their values or labels (Makki, et al, 2018).Malini
and Pushpa (2017) found that among the two
methods tested —KNN and outlier detection — KNN
was more effective for fraud detection.Decision Tree
(DT) is a machine learning method widely used for
fraud detection due to its high accuracy. Studies have
shown DT outperforms other techniques like Naive
Bayes and Random Forest in detecting credit card
and auto insurance fraud. Adaptive methods, such as
oversampling, have also improved performance by
addressing class imbalance issues (Ali, et al, 2022).

3. OBJECTIVE OF THE STUDY

The objective of the study is to achieve a highly
accurate and robust fraud detection system, which is
suitable for real-world deployment, capable of
balancing high recall with minimal false alarms.

4. METHODOLOGY
4.1. Data Acquisition and Feature Definition

The dataset for this study was meticulously
constructed to represent mobile banking transactions
and interaction patterns. It encompasses a
comprehensive range of features, including device
fingerprinting attributes (such as Device ID,
Operating System, and Network Type), behavioral
biometrics (like Typing Speed, Swipe Speed, and
Session Duration), and detailed transactional
information  (including Transaction Amount,
Frequency, and Type). This rich dataset, formatted
for machine learning applications and made
available via the Kaggle platform, allows for the
robust development and evaluation of fraud
detection models by capturing both static device
characteristics and dynamic wuser interaction
behaviors. Variables used in this study are:

Behavioral Variables Typing Speed, Typing
Pressure, Swipe Speed, Tap Duration, Scrolling
Speed, Session Duration, Swipe Direction, Touch
Heatmap, Gesture Frequency, Navigation Flow

Transactional Variables Transaction Amount,
Transaction Type, Transaction Method, Transaction
Latitude, Transaction Longitude, Success Failure
Status, Authentication Attempts, MFA Trigger,
Holiday Indicator, Event Based Indicator, Time
Consistency, Transaction Frequency, Location
Consistency, Geolocation Velocity.

All the variables are selected through reference
journals. Transaction records and interaction logs
were collected from a mobile banking platform,
comprising behavioral biometrics (e.g. typing speed,
swipe gestures) and transactional attributes (e.g.
amount, frequency, geolocation). Each record at time
i is represented by a feature vector X =

[TypingSpeed,, TypingPressure,, SwipeSpeed,, ..., GeolocationVelocity, ]

where  dim(X;) =d  encompasses device
fingerprinting, contextual and derived variables.
Genuine transactions are labeledy; = 0,

fraudulenty; = 1.

Data  Pre-processing Categorical features
(transaction type, method) are encoded via integer
mapping. Numerical features are standardized to
zero mean and unit variance:

Xij= Xig—ty Mj,
0j
where pu;,0; are the sample mean and standard
deviation of feature j. Time-series sequences for
recurrent models use sliding windows of length T
Sk = [X~kr)?k+1r ---»X~k+T—1]-

The dataset is split chronologically into training (70
%) and testing (30 %) sets to emulate real-world
deployment.

Autoencoder-Based Anomaly Detection An
unsupervised autoencoder is trained exclusively on
normal (y=0) data to learn compact
representations. The encoder and decoder are
defined as

v N

i = fenc()?i; Wene benc)'
Xi = faec(Zi; Waees baec)

The encoder function, Z; = fenc()?i), maps the
input to a latent representation, and the decoder

function, )?l- = faec(Z;), reconstructs the input from
the latent space.

The encoder and decoder are multi-layer
perceptrons; the hidden layers use the ReLU
activation function, and the final output layer of the
decoder uses a linear activation function.

The reconstruction loss is the Mean Squared
Error (MSE
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v s
Lag = Nzl 1% — % 13,
i=

After training, the anomaly score for each sample is
E; =1l X; — X; I3,

A threshold 7 is set at the 95th percentile of {E;}iain-

Transactions with E; > 7 are flagged as potential

fraud.

LSTM-Based Sequential Model To capture
temporal dependencies, a bidirectional LSTM
processes the sequence S,. Ateach time step ¢, the cell
computes

fe= U(Wf[ht—y Sk,t] + bf)' I¢
= J(Wi[ht—p Sk,t] + bi):
C; = tanh(W¢[he_y, Se] + bc),  Ce
=061+ O Ct:
0, = c(Wy[he—1, Skt + bo),  he = 0, © tanh(Cyp).

The final hidden state h; is fed to a dense layer
with sigmoid activation to yield a fraud probability
¥. The binary cross-entropy loss is

Lisw == ) [yilog@) + (1 = y)log(1 - 71,

L
Gradient Boosting Classifiers Two tree-based
classifiers, LightGBM and XGBoost, are trained on
the same feature set for supervised detection. Both
optimize regularized objectives of the form

£©) = ) (9 +206),
i=1

where £ is the logigtic loss and 2 penalizes model
complexity (number and weight of trees). Predictions
are aggregated over T boosting rounds

T
yi=o th()?i) .
t=1

Stacked Ensemble Model To leverage
complementary  strengths, outputs of the
autoencoder score, LSTM probability, Light GBM and
XGBoost probabilities form a meta-feature vector

T
— sLSTM LGB XGB
Pi - [Eil yi ] yi ) yl‘ ] .

A logistic regression meta-learner computes the

final fraud score

P = 0(WietaPi + Dmeta)-
The threshold for classification is chosen to maximize
F1-score on a validation subset.

Training and Hyperparameter Tuning All
models employ early stopping with patience of 10
epochs on validation loss. The autoencoder uses
dropout (rate = 0.2) and four hidden layers of
decreasing width. The LSTM has two bidirectional
layers of 64 units each. LightGBM and XGBoost are
tuned over tree depth {4,6,8}, learning rates {0.01,0.1}

and regularization coefficients. Hyperparameters are
selected via grid search optimizing validation AUC.

Evaluation Protocol Performance is assessed on
the held-out test set using;:

Precision:
TP
TP + FP
Recall:
TP
TP + FN
Fl-score:

Precision X Recall

X
Precision + Recall
ROC AUC: area under the true positive vs. false

positive rate curve.

The ensemble is expected to outperform
individual models by balancing false alarms and
missed frauds.

5. RESULTS AND DISCUSSION
5.1. Model 1: Autoencoder Based Behavioral Model

The initial phase of our framework involved an
unsupervised autoencoder, trained exclusively on
genuine transaction and behavioral data. The
model's training history in Figure 1 (top-
left)demonstrates stable convergence, with both
training and validation losses decreasing rapidly and
plateauing after approximately 20 epochs. This
indicates the model successfully learned a compact,
low-dimensional representation of normal user
behavior without significant overfitting.

Table 1: Behavioural Autoencoder Classification

Report.
Precision Recall F1-Score Support

0.0 0.76 0.95 0.85 2068

1.0 0.76 0.33 0.46 932

Accuracy 0.76 3000

Macro Avg 0.76 0.64 0.65 3000

Weighted | 7¢ 0.76 0.73 3000
Avg

The anomaly detection threshold was established
at the 95th percentile of the reconstruction errors
(Mean Squared Error) from the training dataset. The
'Error Distribution' plot in Figure 1 (bottom-left)
visualizes the reconstruction errors for the held-out
test set. A distinct peak is observable at low error
values, representing the majority of genuine
transactions that the model accurately reconstructed.
A long tail of higher errors captures deviations from
this learned norm, which are flagged as anomalies.

The quantitative performance of this anomaly
detection approach is detailed in the Table 1
classification report and the confusion matrix in
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Figure 1 (bottom-center). The model achieved an
overall accuracy of 76%. For the majority class
(genuine transactions, label 0), the model exhibited
strong performance with a high recall of 0.95 and a
precision of 0.76. This is corroborated by the

confusion matrix, which shows the model correctly
identified 1972 genuine transactions (True
Negatives) while only misclassifying 96 as
fraudulent (False Positives).

Behavloral Anomaly Detection Metrics

Vehdatin Loos

£rror Distrbution

\.
.

ROC Curve

Confusion Matrnx

Freos ted

Figure 1: Behavioural Anomaly Detection Metrics for Autoencoder.

However, the model's efficacy in detecting the
minority class (fraud, label 1) was limited. The recall
for fraud was 0.33, with a precision of 0.76. The
confusion matrix reveals that while the model
successfully identified 310 fraudulent transactions
(True Positives), it failed to detect 622 (False
Negatives), misclassifying them as genuine. The F1-
score for the fraud class was 0.46, reflecting this
imbalance between precision and recall.

The model's overall discriminative power is
summarized by the  Receiver  Operating
Characteristic (ROC) curve shown inFigure 1 (top-
middle), which achieved an Area Under the Curve
(AUC) of 0.809. This demonstrates a good, better-
than-chance ability to distinguish between the two
classes. More relevant for this imbalanced dataset,
the Precision-Recall (P-R) curve shown in Figure 1
(top-right) yielded an AUC of 0.674, illustrating the
significant trade-off between precision and recall. The
results of the autoencoder model are insightful. Its

Precison-Recak Curve

—in {

o8 0 1 03 o4 14 ne
ve ke Sncad

F1 Score vs Threshoid

104

! 09 0s 18 15 19 3 10

high recall for genuine transactions (0.95) confirms its
primary strength: it is highly effective at learning and
validating "normal" behavior. In a real-world
scenario, this model component would successfully
pass the vast majority of legitimate user interactions
without friction.

The model's critical weakness, however, lies in its
low recall for fraud (0.33). The 622 false negatives
indicate that nearly 67% of fraudulent activities were
subtle enough to be reconstructed with a low error,
falling below the anomaly threshold. This suggests
that a significant portion of fraudulent behavior
successfully mimics genuine user patterns, a
challenge inherent to purely unsupervised anomaly
detection.

While the model's precision for fraud (0.76) is
respectable —meaning that when it does flag an
anomaly, it is correct 76% of the time — this does not
compensate for the large volume of missed fraud.

The 'F1 Score vs. Threshold' plot in Figure 1
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(bottom-right) confirms that the selected threshold
(red line) is optimally positioned to maximize the F1-
score. Even at this optimal point, the Fl-score for
fraud remains low (0.46), confirming that no simple
threshold adjustment can simultaneously solve the
low recall without catastrophically impacting
precision.

In conclusion, the autoencoder serves as a
valuable baseline for profiling normal behavior but is
insufficient as a standalone fraud detection system.
Its inability to identify sophisticated, mimetic fraud
highlights the necessity for the supervised and
sequential models evaluated in the subsequent
sections of this study. The autoencoder's output (the

reconstruction error) is better utilized as a feature in
a more complex, hybrid model rather than as a
primary decision-maker.

5.2. Model 2: Autoencoder Based Transactional
Model

A second autoencoder was trained under the
same unsupervised principles, but this time using
only transactional features (e.g., amount, frequency,
location) from genuine data. The 'Training History' in
Figure 2 (top-left) again shows excellent
convergence, with the model learning a stable
representation of normal transactional patterns.

Table 2: Transactional Autoencoder Classification Report.

Precision Recall F1-Score Support
0.0 0.85 0.96 0.90 2383
1.0 0.69 0.35 047 617
Accuracy 0.83 3000
Macro Avg 0.77 0.66 0.69 3000
Weighted Avg 0.82 0.83 0.81 3000

The performance of this model on the test set is
presented in Table 2 and Figure 2. The model
achieved an overall accuracy of 83%, a noticeable
improvement over the behavioral model. The
confusion matrix in Figure 2 (bottom-center) shows

\

|

strong performance in identifying genuine
transactions (class 0), correctly classifying 2286 (True
Negatives) with a high recall of 0.96 and precision of
0.85. Only 97 genuine transactions were misclassified
as fraudulent (False Positives).

Tonsactonal Anomaly Detectinon Metrics
KOC Carve

Figure 2: Transactional Anomaly Detection Metrics for Autoencoder.

The model's ability to detect fraud (class 1)
remained a significant challenge. It correctly
identified 219 fraudulent transactions (True

Positives) but missed 398 (False Negatives). This
resulted in a low fraud recall of 0.35, though the
precision for this class was higher at 0.69. The F1-

SCIENTIFIC CULTURE, Vol. 12, No 2.1, (2026), pp. 271-290



278

MD TUHIN RANA et al.

score for the fraud class was 0.47, nearly identical to
the behavioral model.

The model's overall discriminative power, shown
by the ROC curve in Figure 2 (top-middle), was
markedly better, with an AUC of 0.891. This indicates
a stronger ability to separate the two classes
compared to the behavioral model (AUC 0.809).
However, the Precision-Recall curve in Figure 2 (top-
right) yielded an AUC of 0.647, which is comparable
to the previous model and highlights the persistent
difficulty in achieving high recall for the minority
class without sacrificing precision.The transactional
autoencoder demonstrates a clear improvement in
overall accuracy and class separation (AUC-ROC)
compared to the behavioral-only model. This
suggests that transactional data, on its own, provides
a more robust signal for anomaly detection than
behavioral data. The model was exceptionally
effective at learning and validating legitimate
transaction patterns, achieving a 96% recall for the
genuine class.

Despite this improvement, the critical flaw
persists: a very low recall for fraud (0.35). The model
still failed to detect nearly 65% of fraudulent
activities, indicating that these transactions were,
from a feature perspective, indistinguishable from
legitimate ones. The 'Error Distribution' plot in
Figure 2 (bottom-left) shows that the reconstruction
errors for these 398 missed frauds were not high
enough to cross the anomaly threshold.

Comparing the two unsupervised models reveals
a crucial insight. While the transactional model is
better at identifying "normalcy," both models
fundamentally fail to detect a large subset of fraud
that mimics genuine patterns, whether in behavior or
transaction. This parallel weakness, particularly the
near-identical low fraud recall (0.33 vs 0.35), strongly
implies that these two data streams capture different,
non-overlapping aspects of "normal" activity. It also
suggests that fraudsters are adept at mimicking both

ROC Curwe

Precision-facal Cutve

behavioral and transactional norms, just not
necessarily at the same time. This finding motivates
the use of supervised, sequential models that can
learn the more complex, subtle correlations between
these features to identify sophisticated fraud.

5.3. Model 3: LSTM-Based Behavioral Model

Moving from static, unsupervised anomaly
detection to a supervised, sequential approach, a
Long Short-Term Memory (LSTM) network was
trained on sequences of behavioral data. This model
was trained on both genuine and fraudulent samples
to learn the temporal patterns that differentiate them.

Table 3: LSTM-Based Behavioural Model

Classification Report.
Precision | Recall | F1-Score | Support
0.0 0.99 0.91 0.95 1249
1.0 0.83 0.97 0.90 571
Accuracy 0.93 1820
Macro Avg 091 0.94 0.92 1820
Weighted Avg 0.94 0.93 0.93 1820
AUC-ROC 0.9866
Optimal Threshold 0.1226
PR AUC 0.9720

The final performance of the optimized model,
evaluated on the held-out test set, is summarized in
Table 3. This performance represents a
transformative improvement over the autoencoder
models. The model achieved a high overall accuracy
of 93% and a weighted Fl-score of 0.93.Most
critically, the model's ability to detect the minority
fraud class (label 1) was outstanding. It achieved a
fraud recall of 0.97 and a fraud precision of 0.83,
culminating in a strong F1-score of 0.90 for the fraud
class. The confusion matrix in Figure3(right)
provides a clear picture of this success: the model
correctly identified 554 out of 571 fraudulent
transactions (True Positives), missing only 17 (False
Negatives).
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This high sensitivity to fraud came at a minor,
acceptable trade-off. The model's recall for genuine
transactions (class 0) was 0.91, with 112 legitimate

transactions being misclassified as fraudulent (False
Positives). However, the precision for the genuine
class remained exceptionally high at 0.99.
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Figure 4: LSTM-Based Behavioural Model Training Dynamics.

The model's overall discriminative power is
visualized in Figure3 (left and center). The ROC
curve achieved an AUC of 0.99 (0.9866), indicating
near-perfect separation between the two classes.
Furthermore, the Precision-Recall (P-R) curve, which
is highly relevant for imbalanced datasets, yielded an
outstanding AUC of 0.97, demonstrating that the
model maintains high precision even while achieving
near-total recall.

The model's training history is presented in Figure
4. The 'Loss Evolution' plot in Figure 4 (left) shows a
rapid decrease in both training and validation loss,
stabilizing after approximately 10 epochs. The
'Precision Evolution' plot in Figure 4 (right) is
particularly insightful: the validation precision starts
high (around 0.95) and remains high, while the
training precision starts lower and quickly converges
upwards. This indicates the model learned to
generalize effectively from the outset, avoiding
significant overfitting and successfully capturing the
discriminative features of the validation set early in
training.

The results from the behavioral LSTM model are
a significant breakthrough in the context of this
study. The leap in fraud recall from ~0.33 (with the
autoencoders) to 0.97 (with the LSTM) directly
addresses the primary weakness of the
unsupervised, non-sequential models.

This success can be attributed to two key factors

1. Supervised Learning Unlike the autoencoders,

the LSTM was explicitly trained to recognize
the patterns of both fraud and genuine
behavior, allowing it to learn subtle,
discriminative features that the unsupervised
models could not.

2. Sequential Analysis By processing data as a

time-series, the LSTM is capable of capturing
temporal dependencies. This confirms the
hypothesis that fraudulent behavior is not just
a single anomalous data point, but a pattern of
actions over time (e.g., swipe speed, typing
cadence, and navigation flow) that deviates
from a user's normal sequence.

The model is not without its trade-offs. The 112
false positives (112 genuine transactions flagged as
fraud) are a direct consequence of the model's high
sensitivity. In a real-world system, this would
represent an increase in "friction" for legitimate users
(e.g., triggering secondary authentication). However,
given the 97% detection rate of actual fraud, this
balance is highly favorable. A precision of 0.83 for
fraud is also strong, indicating that when an alert is
raised, it is correct 83% of the time, leading to a low
"cry-wolf" rate for security analysts.

In conclusion, the behavioral LSTM model proves
that analyzing the sequence of behavioral biometrics
in a supervised manner is a highly effective strategy
for fraud detection, far surpassing the capabilities of
static anomaly detection.

5.4. Model 4: LSTM-Based Transactional Model

Table 4: LSTM-Based Transactional Model

Classification Report.
Precision | Recall | F1-Score | Support
0.0 0.99 0.85 091 1516
1.0 0.56 0.97 0.71 304
Accuracy 0.87 1820
Macro Avg 0.78 0.91 0.81 1820
Weighted Avg 0.92 0.87 0.88 1820
AUC-ROC 0.9687
Optimal Threshold 0.1272
PR AUC 0.8704
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The final performance evaluation on the test set
presented in Table 4again showed a massive
improvement over the initial autoencoder models.
The model achieved an overall accuracy of 87%.

The model's primary strength, much like the
behavioral LSTM, was its outstanding fraud recall of

Precision-Aacall Cunve

FOC Curve

0.97. The confusion matrix in Figure5(right) confirms
this, showing that the model correctly identified 294
of 304 fraudulent transactions, missing only 10 (False
Negatives). This is the lowest number of missed

frauds of any model thus far.
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However, this high sensitivity came at a
significant cost to precision. The model's precision
for the fraud class was 0.56, with an F1-score of 0.71.
This is a direct result of the model misclassifying 232

04

L)

- 600

o

Pecal (Pediae 0

0h
ol 3|

0% 1]
Podcied

Figure 5: LSTM-Based Transactional Model Evaluation.

genuine transactions as fraudulent (False Positives),
a number more than double that of the behavioral

LSTM.
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The model's overall class separation remained
excellent, with an AUC-ROC of 0.97 (0.9687) shown
in Figure5 (left). The P-R AUC of 0.87 in Figureb
(center) further confirmed its strong, albeit less

balanced, discriminative power.
As a counterpart to the behavioral model, a
second LSTM network was trained on sequences of
transactional data (e.g., transaction amount, type,
location over time). The 'Transactional Model
Training Metrics' in Figure 6 shows a stable learning

Figure 6: LSTM-Based Transactional Model Training Dynamics.

process. Both training and validation loss decreased
consistently, and while the validation precision curve
showed more volatility than the behavioral model, it
trended upward and remained high, indicating the
model successfully generalized.

The transactional LSTM confirms that sequential
analysis is a powerful technique, yielding a 97%
fraud detection rate that is on par with, and even
slightly superior to, the behavioral LSTM (10 missed
frauds vs. 17). This indicates that fraudulent
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transactional sequences (e.g., a series of unusual
amounts, locations, or frequencies) are a highly
reliable signal for detection.

The key finding, however, is the model's trade-off.
In achieving this near-perfect recall, it generated 232
false positives. This contrasts sharply with the
behavioral LSTM, which achieved the same 97%
recall with only 112 false positives. This implies that
while fraudulent transactional patterns are distinct, a
larger number of legitimate transactional patterns
mimic them, leading to a much higher rate of "false
alarms."

When compared, the two LSTM models present
a clear choice

e Behavioral LSTM: Highly balanced, with 97%
recall and high 0.83 precision. It provides a
low-friction, highly accurate solution.

e Transactional LSTM: Highly sensitive, with
97% recall but lower 0.56 precision. It is the
best model for catching fraud but creates
significantly more user friction.

The fact that the two models missed different
transactions (17 vs. 10) and had different false
positive profiles suggests they are learning
complementary patterns. Neither model is a
complete solution on its own. This strongly motivates
the use of tree-based models, which can analyze
these features non-sequentially, and a final ensemble
model that can combine the high-precision alerts
from the behavioral model with the high-sensitivity
alerts from the transactional model.

5.5. Model 5: LightGBM Classifier

To complement the sequence-based deep learning
models, a Light Gradient Boosting Machine
(LightGBM) classifier was trained. This tree-based
model is adept at handling high-dimensional, tabular
data and capturing complex, non-linear interactions
between features without requiring sequential input.

Table 5: Light GBM Classification Report.

Precision | Recall | F1-Score | Support
0.0 0.99 0.95 0.97 1117
1.0 0.94 0.98 0.96 883
Accuracy 0.97 2000
Macro Avg 0.97 0.97 0.97 2000
Weighted Avg 0.97 0.97 0.97 2000
LightGBM Accuracy 0.967
LightGBM AUC-ROC 0.9959404285260937

The performance of the LightGBM model,
detailed in Table was exceptional, achieving a 97%
overall accuracy and a weighted F1-score of 0.97. This
performance represents the most balanced and

effective result of any single model tested.

The model's strength is evident in its handling of
the fraud class. It achieved a fraud recall of 0.98 and
a fraud precision of 0.94, resulting in a best-in-class
Fl-score of 0.96 for fraud detection. The confusion
matrix in Figure 7 (top right) quantifies this: the
model correctly identified 868 fraudulent
transactions while missing only 15 (False Negatives).
Furthermore, it generated only 51 false positives,
demonstrating a remarkable ability to detect fraud
without unduly penalizing legitimate users.

The diagnostic plots in Figure 7 confirm their
superior discriminative power. The ROC curve and
P-R curve both yielded an AUC of 0.99 (0.996 and
0.99 respectively), indicating a near-perfect ability to
distinguish between classes and maintain high
precision across all recall thresholds.

The LightGBM model's performance is a pivotal
finding. It not only matches the 98% recall of the best
LSTM model but also drastically improves the fraud
precision from 0.83 (behavioral LSTM) and 0.56
(transactional LSTM) to an outstanding 0.94. This
demonstrates that for this dataset, the gradient-
boosted tree is a highly effective standalone classifier
and can find discriminative patterns that the
sequential models may overlook.

A significant advantage of the LightGBM model is
its interpretability, as shown in the "Top 10 Features
(Gain)' plot in Figure 7 (bottom right). This plot
provides critical insights into the drivers of fraud
detection. It reveals that Transaction Longitude,
ScrollingSpeed, and TransactionLatitude are by far
the most important features.

This is a key discovery: the model's decisions are
dominated by a combination of transactional data
(geospatial coordinates) and behavioral biometrics
(scrolling speed). This strongly supports the paper's
core hypothesis that a hybrid approach is optimal.
Features from both domains—TypingSpeed,
TransactionAmount, LocationConsistency,
TapDuration, TypingPressure, GestureFrequency,
and SwipeSpeed —all contribute significantly to the
model's predictive power. The model is clearly
leveraging the combination of behavioral and
transactional data to achieve its high accuracy.

In summary, the LightGBM model serves as a
powerful  baseline, demonstrating that a
sophisticated tree-based model can outperform even
complex deep learning models in both accuracy and
balance. Its high precision and recall, combined with
its feature interpretability, make it a strong candidate
for a production system. This sets a very high bar for
the final ensemble model to beat.
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LightGEM Model Diagnostics
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Figure 7: LightGBM Model Diagnostics.

5.6. Model 6: XGBoost Classifier

To validate the strong performance of the tree-
based approach, an XGBoost classifier was trained on

the same hybrid feature set. The results, shown in
Table 6, are strikingly similar to the LightGBM
model, confirming the robustness of gradient
boosting for this task.

Table 6: XGBoost Classification Report.

Precision Recall F1-Score Support

0.0 0.99 0.95 0.97 1117

1.0 0.94 0.98 0.96 883
Accuracy 0.96 2000
Macro Avg 0.96 0.97 0.96 2000
Weighted Avg 0.97 0.96 0.96 2000

XGBoostAccuracy 0.964
XGBoostAUC-ROC 0.9956109178545104

The model achieved 96% accuracy (0.964) with a
weighted Fl-score of 0.96. Its performance on the
fraud class was nearly identical to the LightGBM,
with a fraud recall of 0.98 and fraud precision of 0.94,
leading to a 0.96 Fl-score. The confusion matrixin
Figure 8 (top right) reinforces this, showing an
identical 15 missed frauds (False Negatives) and a
nearly identical 57 false positives (compared to 51 for

LightGBM).

The diagnostic plots in Figure 8 also mirror the
LightGBM's near-perfect performance, with an AUC-
ROC of 0.996 and a P-R AUC of 0.99.

The XGBoost results serve as a powerful
validation of the findings from the LightGBM model.
The fact that two different leading gradient-boosting
implementations achieved almost identical, best-in-
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class performance provides high confidence that this
level of accuracy is both achievable and replicable.
The most interesting finding comes from
comparing the XGBoost 'Top 10 Features (Weight)'
plot in Figure 8 (bottom right) with the LightGBM

feature gain plot. While LightGBM prioritized
geospatial data (TransactionLongitude), XGBoost's
most important feature by F-score (which measures
how often a feature is used to split the data) was
TypingSpeed.

XG8oost Model Diagnostics

ROC Curve (AUC « 0,996)

Tran Pridsve e

Top 10 Features (Wasghe)

Figure 8: XGBoost Model Diagnostics.

This difference is highly significant. It suggests
that while both models arrive at the same conclusion,
they may be using slightly different logic. The
XGBoost model places a behavioral biometric
(TypingSpeed) as the single most decisive feature,
followed by LocationConsistency and
TypingPressure. The LightGBM, by contrast, focused
on raw geospatial data and ScrollingSpeed.

However, the overall picture remains consistent:
in both models, the top features are a rich mix of
behavioral biometrics (typing speed, pressure,
gesture frequency, swipe speed, etc) and
transactional data (location, amount, geolocation
velocity). This cross-domain importance is the key
takeaway.

The near-identical performance of LightGBM and
XGBoost, despite their different feature importance
rankings, confirms that the hybrid dataset is

information-rich. Multiple features are capable of
capturing the discriminative signals of fraud, making
the models robust. This finding strongly suggests
that the final stacked ensemble, which is designed to
leverage the best predictions from all models, has a
firm foundation to build upon.

5.7. Model 7: Stacked Ensemble Model

Finally, a stacked ensemble model was
constructed to synthesize the predictions of the
individual base models. The ensemble used the
outputs from the autoencoders, the LSTM models,
LightGBM, and XGBoost as inputs (meta-features)
for a final logistic regression meta-learner. This
approach aims to leverage the complementary
strengths of each model —the anomaly-scoring of the
autoencoders, the sequential pattern recognition of
the LSTMs, and the high-performance classification
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of the tree-based models.

Table 7: Stacked Ensemble Model Classification Report.

Precision Recall F1-Score Support
0.0 0.98 0.96 0.97 1143
1.0 0.95 0.97 0.96 857
Accuracy 0.97 2000
Macro Avg. 0.96 0.97 0.97 2000
Weighted Avg. 0.97 0.97 0.97 2000

The final test evaluation presented in Table
7demonstrates the most effective balance of all
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Figure 9: Stacked Ensemble Model Diagnostics.

Performance on the fraud class was outstanding,
with a precision of 0.95 and a recall of 0.97, resulting
in a 0.96 F1-score. The confusion matrix in Figure 9
(top right) shows that the ensemble correctly
identified 834  fraudulent transactions. It
misclassified 23 as non-fraudulent (False Negatives)
and misclassified 45 legitimate transactions as
fraudulent (False Positives).

The model's diagnostic curves in Figure 9 (left)

were near-perfect, with an AUC-ROC of 0.996 and a
Precision-Recall AUC (AP) of 0.99, indicating
exceptional and reliable class separation.

The stacked ensemble model represents the
optimal solution found in this study, successfully
balancing the critical trade-off between precision and
recall. While the LightGBM and XGBoost models
achieved a slightly higher recall (98% vs. 97%), they
also produced more false positives (51 and 57,
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respectively). The ensemble model, by contrast,
achieved a higher precision (0.95 vs. 0.94) and
reduced the false positive count to 45, the lowest of
any high-performing model.

This is a crucial outcome for a deployable, real-
world system. The ensemble sacrifices a minimal
amount of recall (missing 8 more frauds than the
LGBM) to gain a significant reduction in false alarms,
thereby minimizing friction for legitimate customers.

The 'Meta-Learner Feature Weights' plot in Figure
9 (bottom right) provides the most compelling
insight. It shows the coefficients assigned by the final
logistic regression meta-learner to the predictions of
the base models. The plot reveals that the meta-
learner placed the highest importance on the
LightGBM model's output (coefficient ~ 5.5),
followed by the XGBoost model (coefficient ~ 2.5).

This finding implies that the meta-learner learned
that the tree-based models were the most reliable and
decisive predictors. The information from the
autoencoder and LSTM models was likely found to
be already captured, or even surpassed, by the

gradient-boosting models, which were trained on the
full set of hybrid features.

In conclusion, the stacked ensemble successfully
refined the predictions of the Dbest-in-class tree
models, producing a final classifier with the best
balance of high-sensitivity fraud detection (97%
recall) and high-confidence, low-friction alerts (95%
precision, lowest false positives). This result confirms
the paper's hypothesis that a hybrid framework,
culminating in an ensemble that leverages the
strengths of diverse models, provides a robust and
highly deployable solution for mobile banking fraud
detection.

6. PREDICTION EXAMPLE

To further exemplify the predictive capacity of the
developed ensemble fraud detection model, a case-
based evaluation was performed on selected
instances from the testing dataset. Table 8 displays
the input features for the first five samples, and Table
9 presents their corresponding true fraud labels.

Table 8: Selected Feature Inputs from Test Data.

Behavioral error Transaction error Transaction Dow Time since Typing Typing Swipe Speed
Hour last speed Pressure
8000 0.514483 1.183499 12 1 0.0 243.453684 | 0.771613 760.610994
8001 0.198513 2.008416 12 1 60.0 180.966235 | 0.490504 562.882771
8002 0.414494 1.038565 12 1 60.0 250.338927 | 0.816292 810.838069
8003 0.334070 0.836627 12 1 60.0 185.973378 | 0.451543 604.062186
8004 0.188085 0.850656 12 1 60.0 242.596600 | 0.691854 721.004786
Tap Duration | Scrolling speed ?22;:;1;: Succesei:tia;lure Aug‘;g:l;attslon MFA Trigger Ilzgiz‘i:gr
158.001258 603.435294 -121.815354 0 1 1.0 0.0
105.103620 289.830191 -122.492446 1 0 0.0 0.0
141.291019 525.320527 -121.961113 0 3 1.0 0.0
102.434831 298.492526 -122.367992 1 1 1.0 0.0
150.078934 532.826997 .. -122.044409 0 1 1.0 0.0
Event Based Indicator Time Consistency Transaction Frequency Location Consistency Geolocation Velocity
0 1.0 5 0.004610 0.000000
0 1.0 5 0.173275 0.171206
0 1.0 1 0.085234 0.131215
0 1.0 2 0.090637 0.141121
0 1.0 4 0.055433 0.145750

For instance, sample 8000 exhibited moderately
high reconstruction errors for both behavioral
(0.4856) and transactional (1.1833) dimensions,
coupled with an active multifactor authentication
(MFATrigger = 1.0) and immediate transaction
timing (time_since_last = 0 seconds). The ensemble
model correctly predicted this instance as fraud (True
Label = 1), indicating its sensitivity to subtle
deviations in user behavior and transaction patterns.
In contrast, sample 8001, although displaying a
higher transactional error (2.0089), had a normal
behavioral error and no triggered MFA (MFATrigger

= 0.0), and was correctly classified as a non-
fraudulent transaction (True Label = 0).

Table 9: Corresponding True Labels.

Label
8000 1.0
8001 0.0
8002 1.0
8003 0.0
8004 1.0

Such granular analysis underscores the model’s
capacity to interpret a complex interplay of
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behavioral and transactional signals rather than
relying on singular feature anomalies. The
ensemble’s high accuracy in these prediction
examples reflects the robustness of the integrated
decision-making mechanism, enhancing real-world
trustworthiness for mobile banking fraud prevention
systems.

7. CONCLUSION

This study successfully designed, implemented,
and evaluated a multi-faceted hybrid deep learning
framework for fraud detection in mobile banking.
The primary objective —to develop a highly accurate
and robust system suitable for real-world
deployment by balancing high recall with minimal
false alarms — was achieved.

The investigation systematically demonstrated a
clear progression in model efficacy. Initial
unsupervised autoencoder models, while effective at
profiling "normal" user activity, proved insufficient
for comprehensive fraud detection, failing to identify
over 65% of fraudulent transactions. The
introduction of supervised, sequential LSTM
networks marked a significant breakthrough,
proving that temporal patterns within both
behavioral biometrics and transactional data are
highly discriminative. These models achieved
exceptional fraud recall (97%), but also highlighted a
critical trade-off between the high precision of the
behavioral model and the high sensitivity of the
transactional model.
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