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ABSTRACT 

The proliferation of mobile banking has been accompanied by a surge in sophisticated financial fraud, 
necessitating detection systems that go beyond traditional methods. This paper designs and validates a multi-
faceted, hybrid machine learning framework that synergizes behavioral biometrics (e.g., typing speed, swipe 
patterns) with transactional data (e.g., amount, geolocation) for high-accuracy fraud detection. We evaluate 
the progression of models, demonstrating that while unsupervised autoencoders are effective at profiling 
normal behavior, they fail to detect over 65% of fraudulent activities. Supervised Long Short-Term Memory 
(LSTM) networks, capturing temporal sequences, significantly improve performance, achieving fraud recall 
rates as high as 97%. However, gradient-boosting models (LightGBM and XGBoost) yield the most balanced 
standalone performance, with 98% recall and 94% precision. Feature importance analysis from these models 
confirms that the framework's predictive power is derived from a hybrid of both behavioral and transactional 
features. The framework culminates in a stacked ensemble model that optimizes the precision-recall trade-off, 
achieving 97% accuracy, 97% fraud recall, and 95% fraud precision. This final model registers the lowest false 
positive rate, presenting a robust, reliable, and deployable solution that maximizes fraud capture while 
minimizing unnecessary friction for legitimate users. 

KEYWORDS: Fraud Detection, Mobile Banking, behavioral Biometrics, Transactional Pattern. 
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1. INTRODUCTION 

The convergence of wireless communication, 
smartphones, and banking infrastructure has 
fostered the digital payment environment that has 
been instinctively replacing conventional 
transactions by cash. As technology is rapidly 
developing, there has been a remarkable shift in the 
transaction method to cashless payment. Moreover, 
the Governments all over the world are actively 
encouraging this shift, yet developing and emerging 
markets are not exempt from that (Nguyen & Huynh, 
2018; Namweli & Magali, 2018; Gupta et al., 2020; 
Hung et al., 2021; Lonkani et al., 2020; Malaquias et 
al., 2021; Omigie et al., 2020; Wamba et al., 2021). 
While, cash remains widely accepted along with 
familiar due to its longstanding nature, digital 
payments offer greater convenience by reduced time 
and effort in the transactions process (Hassan, et al., 
2021; Shree, et al, 2021). 

E-payment refers to the use of electronic networks 
throughtransferring money during commercial 
transactions (Al-Sabaawi, et al., 2023; Nguyen & 
Huynh, 2018; Ming-Yen Teoh et al., 2013). 
Masihuddin et al. (2017) depicts, it involves 
converting cash into digital form between buyers and 
sellers using electronic technologies.However, the 
terms e-payment methods, digital payments, and 
online payments are often used interchangeably, as 
they all refer to the use of electronic technologies to 
transfer money in commercial transactions 
(Arjunwadkar, 2018;).Electronic payment 
technologies provide more than just ease of use—
they help businesses reach more customers, reduce 
cash-handling expenses, and bring informal 
economic activities into the formal system, leading to 
increased tax revenue for governments. 
Additionally, online payment systems offer 
innovative features that benefit both customers and 
banks by eliminating the challenges of traditional 
banking methods, such as the need to visit a bank for 
withdrawals or deposits, by reducing delays, 
minimizing miscommunication and so on (Al-
Okaily, et al, 2024; Khando, et al, 2022; Al-Okaily et 
al., 2020). 

The digital commerce landscape is rapidly 
transforming, with online transactions becoming a 
dominant mode of exchange due to the unparalleled 
convenience and global accessibility they provide. 
This growing dependence on electronic payment 
systems has simultaneously created opportunities for 
cybercriminals to exploit users’ trust and system 
vulnerabilities (Vimal et al., 2021). Besides, various 
benefits associated with online payment systems also 
face notable limitations and challenges. A key 

concern among users is the fear of security breaches, 
which could lead to financial losses. Additionally, 
risks of fraud and cyberattacks, along with 
insufficient protection mechanisms, could bring 
decline in consumer trust and usage of digital 
payment technologies (Khando, et al, 2022b; Al-Qadi, 
2018; Kabir, et al, 2015) 

Online payment fraud encompasses a broad 
spectrum of deceptive tactics aimed at unlawfully 
acquiring funds or goods through digital platforms 
(Sun et al., 2021). These fraudulent actions include 
account hijacking, phishing attacks, synthetic 
identity creation, and payment card misuse, all of 
which capitalize on weaknesses within the digital 
transaction ecosystem (Strelcenia & Prakoonwit, 
2023). Among the most prevalent methods is identity 
theft, wherein criminals obtain sensitive personal 
information—such as banking credentials or social 
identification numbers—to impersonate individuals 
and execute unauthorized transactions, often 
resulting in severe financial and reputational 
consequences for the victims (Pan, 2024). 

Understanding these evolving fraud 
methodologies is crucial for developing robust 
countermeasures and enhancing the security posture 
of online transactional environments (Mehana & 
Pireva, 2020). Fraudsters execute online transaction 
fraud through various sophisticated methods, 
leveraging vulnerabilities in payment systems and 
exploiting human factors to gain unauthorized access 
to financial resources (Sadgali et al., 2019). The rapid 
expansion of e-commerce has unfortunately 
provided fertile ground for these illicit activities, 
making it imperative for financial institutions to 
implement automated deterrent mechanisms to 
safeguard against the surging tide of fraudulent 
credit card transactions (Forough & Momtazi, 2020). 
The challenge in combating these illicit activities lies 
in the need for real-time detection and prevention, as 
transactions are often processed instantaneously 
(Chalapathy & Chawla, 2019).Given that online 
transactions do not necessitate the physical presence 
of the cardholder, cybercriminals can readily 
impersonate legitimate users to conduct 
unauthorized transactions, thereby exacerbating the 
challenge of fraud detection (Manek et al., 2019). The 
sheer volume and complexity of data generated by 
digital payment systems also render traditional fraud 
detection methods inadequate, necessitating 
advanced computational approaches (Chang et al., 
2024). The dynamic nature of fraudulent behavior, 
which constantly evolves to evade detection, 
presents a formidable challenge for static fraud 
detection systems (Carcillo et al., 2019; Rzayeva & 
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Malekzadeh, 2022). This necessitates the 
development of robust, real-time fraud detection 
systems capable of analyzing vast datasets for 
anomalies and emerging patterns (Tran, 2022). One 
effective approach to combatting this challenge 
involves employing machine learning algorithms, 
which can analyze vast datasets to identify 
fraudulent transactions by discerning subtle patterns 
and anomalies that human analysts might overlook 
(Dornadula & Geetha, 2019). These models can use 
historical data to distinguish between legitimate and 
fraudulent transactions, significantly improving 
detection accuracy (Bello & Olufemi, 
2024).Therefore, this research aims to identify the 
shift underscoring the sophisticated fraud detection 
systems of mobile banking throughanalyzing 
transaction patterns as well as behavioral anomalies 
to identify suspicious activities in real-time. 

2. LITERATURE REVIEW 

The advancement of global communication and 
technological infrastructure has, regrettably, been 
accompanied by a corresponding increase in 
fraudulent activities, thereby the urgent need for 
robust fraud detection strategies gets the importance. 
Fraud may be addressed either through proactive 
prevention or detection after the occurrence of illicit 
activity (Alkhateeb & Maolood, 2019). The 
identification of fraudulent transactions commonly 
involves the examination of transactional data to 
recognize irregular or suspicious behavioral patterns 
(Tran, 2022). Although digital payment systems offer 
substantial convenience, their widespread adoption 
has simultaneously escalated the prevalence of 
online fraud, primarily due to the overlapping 
behavioral characteristics shared between genuine 
and deceptive transactions (Keskenler et al., 2021).As 
Fintech operates on the existing IT infrastructure, it 
remains vulnerable to exploitation through targeted 
fraudulent activities. Detecting such threats poses 
significant technical challenges. To address this, the 
industry increasingly employs Machine Learning 
(ML) techniques, including anomaly detection, to 
automatically identify suspicious patterns. ML 
methods such as learning algorithms, statistical 
models, and artificial neural networks (ANN) are 
used to analyze data and inform effective fraud 
prevention strategies (Khando, et al, 2022b). 

There are many ML methods used in the literature 
to detect fraud transaction in online platforms-such 
as Logistic Regression, K-Nearest Neighbors, 
Decision Tree, Naïve Bayes, Random Forest, 
Gradient Boosting Machines, Light Gradient 
Boosting Machine, Extreme Gradient Boosting, and 

Long Short Term Model (Dileep, et al, 2021; Guezzaz, 
et al, 2021; Gupta, et al, 2021; Hancock & 
Khoshgoftaar, 2021; Itoo, et al, 2021; Jemima 
Jebaseeli, et al, 2021; Owolafe, et al, 2021; Mishra, K. 
N., & Pandey, 2021; Jan, 2021; Benchaji, et al, 2021; 
Vassallo, et al, 2021; Zarezadeh, et al, 2021; Alfaiz & 
Fati, 2022; Aslam, et al, 2022;Aziz, et al, 2022; Chang, 
et al., 2022; Zhang , 2022; Aburbeian & Ashqar, 2023; 
Ali, et al, 2023; Douiba, et al, 2023; Du, et al, 2023; 
Hajek, et al, 2023; Naeem, et al, 2023; Ugale & 
Midhunchakkaravarthy, 2023; Vishwakarma & 
Kesswani, 2023, Khalid, et al, 2024; Mehdary, et al, 
2024). 

In order to determine the best three models for 
detecting credit card fraud, Alfaiz et al. (2022) used 
nine Machine Learning Algorithms in the first stage 
to test their performance. In both phases, each model 
assessed using the F1-Score, Accuracy, Recall, 
Precision, and Area under the Receiver Operating 
Characteristic Curve (AUC), AllKNN-CatBoost was 
contrasted with earlier research using the same 
dataset and comparable methodologies. AllKNN-
CatBoost did, in fact, performed better than earlier 
models in terms of F1-Score (87.40%), AUC (97.94%), 
and Recall (95.91%).Chang et al. (2022) evaluated 
various Machine Learning Algorithms—such as 
logistic regression, decision tree, k-nearest 
neighbours, random forest, and autoencoder—to 
create an effective and stable model for fraud 
detection platforms suitable for Industry 0.4. The 
Results indicated from the random forest and logistic 
regression surpassed other techniques as all the 
models that could achieve more than 96% accuracy, 
81% sensitivity, and 97% specificityin most of the 
cases, the Area Under the Receiver Operating Curves 
(AUROC) values of the used model are higher than 
0.9. The research done by Ileberi, et al (2022) employs 
a genetic algorithm-based feature selection technique 
to identify the most significant features for credit 
card fraud detection. It integrates various machine 
learning classifiers, such as Decision Tree, Random 
Forest, Logistic Regression, Artificial Neural 
Network, and Naive Bayes. The findings indicated 
that this proposed method surpassed existing 
systems in fraud detection performance. 
Additionally, the study reveals that using the genetic 
algorithm for feature selection enhances the accuracy 
of the machine learning models. 

Xu and Liu (2018) applied an optimized SVM on 
commercial bank datasets for online credit card 
fraud, showing its effectiveness over other models. 
Mareeswari and Gunasekaran (2016) integrated SVM 
with spike detection for credit card fraud, 
outperforming prior approachesCarneiro et al. (2015) 
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that proposed a hybrid method combining Hidden 
Markov Models (HMM) with Genetic Algorithms 
(GA) for credit card fraud detection. In this approach, 
HMM used to model historical transaction patterns, 
while GA optimizes threshold values for clustering 
and classifying new transactions. The study 
demonstrated that this method enhances the 
accuracy of fraud detection. Similarly, Mhamane 
(2012) implemented a comparable technique for 
detecting fraud in internet banking, emphasizing the 
accurate identification of genuine users and the 
monitoring of anomalous behaviors.On the other 
hand, the K-Nearest Neighbors (KNN) algorithm is a 
widely used data mining technique for both 
classification and regression tasks. It operates on a 
simple principle: to make a prediction for a given 
data point. The algorithm identifies the k closest data 
points in the feature space and bases the prediction 
on their values or labels (Makki, et al, 2018).Malini 
and Pushpa (2017) found that among the two 
methods tested—KNN and outlier detection—KNN 
was more effective for fraud detection.Decision Tree 
(DT) is a machine learning method widely used for 
fraud detection due to its high accuracy. Studies have 
shown DT outperforms other techniques like Naïve 
Bayes and Random Forest in detecting credit card 
and auto insurance fraud. Adaptive methods, such as 
oversampling, have also improved performance by 
addressing class imbalance issues (Ali, et al, 2022). 

3. OBJECTIVE OF THE STUDY 

The objective of the study is to achieve a highly 
accurate and robust fraud detection system, which is 
suitable for real-world deployment, capable of 
balancing high recall with minimal false alarms. 

4. METHODOLOGY 

4.1. Data Acquisition and Feature Definition 

The dataset for this study was meticulously 
constructed to represent mobile banking transactions 
and interaction patterns. It encompasses a 
comprehensive range of features, including device 
fingerprinting attributes (such as Device ID, 
Operating System, and Network Type), behavioral 
biometrics (like Typing Speed, Swipe Speed, and 
Session Duration), and detailed transactional 
information (including Transaction Amount, 
Frequency, and Type). This rich dataset, formatted 
for machine learning applications and made 
available via the Kaggle platform, allows for the 
robust development and evaluation of fraud 
detection models by capturing both static device 
characteristics and dynamic user interaction 
behaviors. Variables used in this study are: 

Behavioral Variables Typing Speed, Typing 
Pressure, Swipe Speed, Tap Duration, Scrolling 
Speed, Session Duration, Swipe Direction, Touch 
Heatmap, Gesture Frequency, Navigation Flow 

Transactional Variables Transaction Amount, 
Transaction Type, Transaction Method, Transaction 
Latitude, Transaction Longitude, Success Failure 
Status, Authentication Attempts, MFA Trigger, 
Holiday Indicator, Event Based Indicator, Time 
Consistency, Transaction Frequency, Location 
Consistency, Geolocation Velocity. 

All the variables are selected through reference 
journals. Transaction records and interaction logs 
were collected from a mobile banking platform, 
comprising behavioral biometrics (e.g. typing speed, 
swipe gestures) and transactional attributes (e.g. 
amount, frequency, geolocation). Each record at time 
𝑖 is represented by a feature vector 𝑋𝑖 =

[TypingSpeed
𝑖
,  TypingPressure

𝑖
,  SwipeSpeed

𝑖
,  … ,  GeolocationVelocity

𝑖
] 

where dim(𝑋𝑖) = 𝑑 encompasses device 
fingerprinting, contextual and derived variables. 
Genuine transactions are labeled𝑦𝑖 = 0, 
fraudulent𝑦𝑖 = 1. 

Data Pre-processing Categorical features 
(transaction type, method) are encoded via integer 
mapping. Numerical features are standardized to 
zero mean and unit variance: 

𝑋̃𝑖,𝑗 =
𝑋𝑖,𝑗 − 𝜇𝑗

𝜎𝑗

, 

where 𝜇𝑗, 𝜎𝑗 are the sample mean and standard 

deviation of feature 𝑗. Time-series sequences for 
recurrent models use sliding windows of length 𝑇: 

𝑆𝑘 = [𝑋̃𝑘, 𝑋̃𝑘+1, … , 𝑋̃𝑘+𝑇−1]. 
The dataset is split chronologically into training (70 
%) and testing (30 %) sets to emulate real-world 
deployment. 

Autoencoder-Based Anomaly Detection An 
unsupervised autoencoder is trained exclusively on 
normal (𝑦 = 0) data to learn compact 
representations. The encoder and decoder are 
defined as 

𝑍𝑖 = 𝑓enc(𝑋̃𝑖; 𝑊enc, 𝑏enc), 

𝑋̂̃𝑖 = 𝑓dec(𝑍𝑖;  𝑊dec, 𝑏dec) 

The encoder function, 𝑍𝑖 = 𝑓enc(𝑋̃𝑖), maps the 

input to a latent representation, and the decoder 

function, 𝑋̂̃𝑖 = 𝑓dec(𝑍𝑖), reconstructs the input from 
the latent space. 

The encoder and decoder are multi-layer 
perceptrons; the hidden layers use the ReLU 
activation function, and the final output layer of the 
decoder uses a linear activation function. 

The reconstruction loss is the Mean Squared 
Error (MSE 
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ℒAE =
1

𝑁
∑ ∥

𝑁

𝑖=1

𝑋̃𝑖 − 𝑋̂̃𝑖 ∥2
2. 

After training, the anomaly score for each sample is 

𝐸𝑖 =∥ 𝑋̃𝑖 − 𝑋̂̃𝑖 ∥2
2. 

A threshold 𝜏 is set at the 95th percentile of {𝐸𝑖}train. 
Transactions with 𝐸𝑖 > 𝜏 are flagged as potential 
fraud. 

LSTM-Based Sequential Model To capture 
temporal dependencies, a bidirectional LSTM 
processes the sequence 𝐒𝑘. At each time step 𝑡, the cell 
computes 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1,  𝑆𝑘,𝑡] + 𝑏𝑓), 𝑖𝑡

= 𝜎(𝑊𝑖[ℎ𝑡−1,  𝑆𝑘,𝑡] + 𝑏𝑖), 

𝐶̃𝑡 = tanh(𝑊𝐶[ℎ𝑡−1,  𝑆𝑘,𝑡] + 𝑏𝐶), 𝐶𝑡

= 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡 , 
𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1,  𝑆𝑘,𝑡] + 𝑏𝑜), ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡). 

The final hidden state ℎ𝑇 is fed to a dense layer 
with sigmoid activation to yield a fraud probability 
𝑦̂. The binary cross-entropy loss is 

ℒLSTM = − ∑ [𝑦𝑖log(𝑦̂𝑖) + (1 − 𝑦𝑖)log(1 − 𝑦̂𝑖)]

𝑖

. 

Gradient Boosting Classifiers Two tree-based 
classifiers, LightGBM and XGBoost, are trained on 
the same feature set for supervised detection. Both 
optimize regularized objectives of the form 

ℒ(𝜃) = ∑ ℓ

𝑚

𝑖=1

(𝑦𝑖 , 𝑦̂𝑖) + 𝛺(𝜃), 

where ℓ is the logistic loss and 𝛺 penalizes model 
complexity (number and weight of trees). Predictions 
are aggregated over 𝑇 boosting rounds 

𝑦̂𝑖 = 𝜎 (∑ 𝑓𝑡

𝑇

𝑡=1

(𝑋̃𝑖)). 

Stacked Ensemble Model To leverage 
complementary strengths, outputs of the 
autoencoder score, LSTM probability, LightGBM and 
XGBoost probabilities form a meta-feature vector 

𝑃𝑖 = [𝐸𝑖 ,   𝑦̂𝑖
LSTM,   𝑦̂𝑖

LGB,   𝑦̂𝑖
XGB]

𝑇
. 

A logistic regression meta-learner computes the 
final fraud score 

𝑦̂𝑖
ens = 𝜎(𝑊meta𝑃𝑖 + 𝑏meta). 

The threshold for classification is chosen to maximize 
F1-score on a validation subset. 

Training and Hyperparameter Tuning All 
models employ early stopping with patience of 10 
epochs on validation loss. The autoencoder uses 
dropout (rate = 0.2) and four hidden layers of 
decreasing width. The LSTM has two bidirectional 
layers of 64 units each. LightGBM and XGBoost are 
tuned over tree depth {4,6,8}, learning rates {0.01,0.1} 

and regularization coefficients. Hyperparameters are 
selected via grid search optimizing validation AUC. 

Evaluation Protocol Performance is assessed on 
the held-out test set using: 

Precision: 
TP

TP + FP
 

Recall: 
TP

TP + FN
 

F1-score: 

2 ×
Precision × Recall

Precision + Recall
 

ROC AUC: area under the true positive vs. false 
positive rate curve. 

The ensemble is expected to outperform 
individual models by balancing false alarms and 
missed frauds. 

5. RESULTS AND DISCUSSION 

5.1. Model 1: Autoencoder Based Behavioral Model 

The initial phase of our framework involved an 
unsupervised autoencoder, trained exclusively on 
genuine transaction and behavioral data. The 
model's training history in Figure 1 (top-
left)demonstrates stable convergence, with both 
training and validation losses decreasing rapidly and 
plateauing after approximately 20 epochs. This 
indicates the model successfully learned a compact, 
low-dimensional representation of normal user 
behavior without significant overfitting. 

Table 1: Behavioural Autoencoder Classification 
Report. 

 Precision Recall F1-Score Support 

0.0 0.76 0.95 0.85 2068 

1.0 0.76 0.33 0.46 932 

Accuracy   0.76 3000 

Macro Avg 0.76 0.64 0.65 3000 

Weighted 
Avg 

0.76 0.76 0.73 3000 

The anomaly detection threshold was established 
at the 95th percentile of the reconstruction errors 
(Mean Squared Error) from the training dataset. The 
'Error Distribution' plot in Figure 1 (bottom-left) 
visualizes the reconstruction errors for the held-out 
test set. A distinct peak is observable at low error 
values, representing the majority of genuine 
transactions that the model accurately reconstructed. 
A long tail of higher errors captures deviations from 
this learned norm, which are flagged as anomalies. 

The quantitative performance of this anomaly 
detection approach is detailed in the Table 1 
classification report and the confusion matrix in 
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Figure 1 (bottom-center). The model achieved an 
overall accuracy of 76%. For the majority class 
(genuine transactions, label 0), the model exhibited 
strong performance with a high recall of 0.95 and a 
precision of 0.76. This is corroborated by the 

confusion matrix, which shows the model correctly 
identified 1972 genuine transactions (True 
Negatives) while only misclassifying 96 as 
fraudulent (False Positives). 

 
Figure 1: Behavioural Anomaly Detection Metrics for Autoencoder. 

However, the model's efficacy in detecting the 
minority class (fraud, label 1) was limited. The recall 
for fraud was 0.33, with a precision of 0.76. The 
confusion matrix reveals that while the model 
successfully identified 310 fraudulent transactions 
(True Positives), it failed to detect 622 (False 
Negatives), misclassifying them as genuine. The F1-
score for the fraud class was 0.46, reflecting this 
imbalance between precision and recall. 

The model's overall discriminative power is 
summarized by the Receiver Operating 
Characteristic (ROC) curve shown inFigure 1 (top-
middle), which achieved an Area Under the Curve 
(AUC) of 0.809. This demonstrates a good, better-
than-chance ability to distinguish between the two 
classes. More relevant for this imbalanced dataset, 
the Precision-Recall (P-R) curve shown in Figure 1 
(top-right) yielded an AUC of 0.674, illustrating the 
significant trade-off between precision and recall.The 
results of the autoencoder model are insightful. Its 

high recall for genuine transactions (0.95) confirms its 
primary strength: it is highly effective at learning and 
validating "normal" behavior. In a real-world 
scenario, this model component would successfully 
pass the vast majority of legitimate user interactions 
without friction. 

The model's critical weakness, however, lies in its 
low recall for fraud (0.33). The 622 false negatives 
indicate that nearly 67% of fraudulent activities were 
subtle enough to be reconstructed with a low error, 
falling below the anomaly threshold. This suggests 
that a significant portion of fraudulent behavior 
successfully mimics genuine user patterns, a 
challenge inherent to purely unsupervised anomaly 
detection. 

While the model's precision for fraud (0.76) is 
respectable—meaning that when it does flag an 
anomaly, it is correct 76% of the time—this does not 
compensate for the large volume of missed fraud. 

The 'F1 Score vs. Threshold' plot in Figure 1 
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(bottom-right) confirms that the selected threshold 
(red line) is optimally positioned to maximize the F1-
score. Even at this optimal point, the F1-score for 
fraud remains low (0.46), confirming that no simple 
threshold adjustment can simultaneously solve the 
low recall without catastrophically impacting 
precision. 

In conclusion, the autoencoder serves as a 
valuable baseline for profiling normal behavior but is 
insufficient as a standalone fraud detection system. 
Its inability to identify sophisticated, mimetic fraud 
highlights the necessity for the supervised and 
sequential models evaluated in the subsequent 
sections of this study. The autoencoder's output (the 

reconstruction error) is better utilized as a feature in 
a more complex, hybrid model rather than as a 
primary decision-maker. 

5.2. Model 2: Autoencoder Based Transactional 
Model 

A second autoencoder was trained under the 
same unsupervised principles, but this time using 
only transactional features (e.g., amount, frequency, 
location) from genuine data. The 'Training History' in 
Figure 2 (top-left) again shows excellent 
convergence, with the model learning a stable 
representation of normal transactional patterns. 

Table 2: Transactional Autoencoder Classification Report. 
 Precision Recall F1-Score Support 

0.0 0.85 0.96 0.90 2383 

1.0 0.69 0.35 0.47 617 

Accuracy   0.83 3000 

Macro Avg 0.77 0.66 0.69 3000 

Weighted Avg 0.82 0.83 0.81 3000 

The performance of this model on the test set is 
presented in Table 2 and Figure 2. The model 
achieved an overall accuracy of 83%, a noticeable 
improvement over the behavioral model. The 
confusion matrix in Figure 2 (bottom-center) shows 

strong performance in identifying genuine 
transactions (class 0), correctly classifying 2286 (True 
Negatives) with a high recall of 0.96 and precision of 
0.85. Only 97 genuine transactions were misclassified 
as fraudulent (False Positives). 

 
Figure 2: Transactional Anomaly Detection Metrics for Autoencoder. 

The model's ability to detect fraud (class 1) 
remained a significant challenge. It correctly 
identified 219 fraudulent transactions (True 

Positives) but missed 398 (False Negatives). This 
resulted in a low fraud recall of 0.35, though the 
precision for this class was higher at 0.69. The F1-
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score for the fraud class was 0.47, nearly identical to 
the behavioral model. 

The model's overall discriminative power, shown 
by the ROC curve in Figure 2 (top-middle), was 
markedly better, with an AUC of 0.891. This indicates 
a stronger ability to separate the two classes 
compared to the behavioral model (AUC 0.809). 
However, the Precision-Recall curve in Figure 2 (top-
right) yielded an AUC of 0.647, which is comparable 
to the previous model and highlights the persistent 
difficulty in achieving high recall for the minority 
class without sacrificing precision.The transactional 
autoencoder demonstrates a clear improvement in 
overall accuracy and class separation (AUC-ROC) 
compared to the behavioral-only model. This 
suggests that transactional data, on its own, provides 
a more robust signal for anomaly detection than 
behavioral data. The model was exceptionally 
effective at learning and validating legitimate 
transaction patterns, achieving a 96% recall for the 
genuine class. 

Despite this improvement, the critical flaw 
persists: a very low recall for fraud (0.35). The model 
still failed to detect nearly 65% of fraudulent 
activities, indicating that these transactions were, 
from a feature perspective, indistinguishable from 
legitimate ones. The 'Error Distribution' plot in 
Figure 2 (bottom-left) shows that the reconstruction 
errors for these 398 missed frauds were not high 
enough to cross the anomaly threshold. 

Comparing the two unsupervised models reveals 
a crucial insight. While the transactional model is 
better at identifying "normalcy," both models 
fundamentally fail to detect a large subset of fraud 
that mimics genuine patterns, whether in behavior or 
transaction. This parallel weakness, particularly the 
near-identical low fraud recall (0.33 vs 0.35), strongly 
implies that these two data streams capture different, 
non-overlapping aspects of "normal" activity. It also 
suggests that fraudsters are adept at mimicking both 

behavioral and transactional norms, just not 
necessarily at the same time. This finding motivates 
the use of supervised, sequential models that can 
learn the more complex, subtle correlations between 
these features to identify sophisticated fraud. 

5.3. Model 3: LSTM-Based Behavioral Model 

Moving from static, unsupervised anomaly 
detection to a supervised, sequential approach, a 
Long Short-Term Memory (LSTM) network was 
trained on sequences of behavioral data. This model 
was trained on both genuine and fraudulent samples 
to learn the temporal patterns that differentiate them. 

Table 3: LSTM-Based Behavioural Model 
Classification Report. 

 Precision Recall F1-Score Support 

0.0 0.99 0.91 0.95 1249 

1.0 0.83 0.97 0.90 571 

Accuracy   0.93 1820 

Macro Avg 0.91 0.94 0.92 1820 

Weighted Avg 0.94 0.93 0.93 1820 

AUC-ROC 0.9866 

Optimal Threshold 0.1226 

PR AUC 0.9720 

The final performance of the optimized model, 
evaluated on the held-out test set, is summarized in 
Table 3. This performance represents a 
transformative improvement over the autoencoder 
models. The model achieved a high overall accuracy 
of 93% and a weighted F1-score of 0.93.Most 
critically, the model's ability to detect the minority 
fraud class (label 1) was outstanding. It achieved a 
fraud recall of 0.97 and a fraud precision of 0.83, 
culminating in a strong F1-score of 0.90 for the fraud 
class. The confusion matrix in Figure3(right) 
provides a clear picture of this success: the model 
correctly identified 554 out of 571 fraudulent 
transactions (True Positives), missing only 17 (False 
Negatives). 

 
Figure 3: LSTM-Based Behavioural Model Evaluation. 
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This high sensitivity to fraud came at a minor, 
acceptable trade-off. The model's recall for genuine 
transactions (class 0) was 0.91, with 112 legitimate 

transactions being misclassified as fraudulent (False 
Positives). However, the precision for the genuine 
class remained exceptionally high at 0.99. 

 
Figure 4: LSTM-Based Behavioural Model Training Dynamics. 

The model's overall discriminative power is 
visualized in Figure3 (left and center). The ROC 
curve achieved an AUC of 0.99 (0.9866), indicating 
near-perfect separation between the two classes. 
Furthermore, the Precision-Recall (P-R) curve, which 
is highly relevant for imbalanced datasets, yielded an 
outstanding AUC of 0.97, demonstrating that the 
model maintains high precision even while achieving 
near-total recall. 

The model's training history is presented in Figure 
4. The 'Loss Evolution' plot in Figure 4 (left) shows a 
rapid decrease in both training and validation loss, 
stabilizing after approximately 10 epochs. The 
'Precision Evolution' plot in Figure 4 (right) is 
particularly insightful: the validation precision starts 
high (around 0.95) and remains high, while the 
training precision starts lower and quickly converges 
upwards. This indicates the model learned to 
generalize effectively from the outset, avoiding 
significant overfitting and successfully capturing the 
discriminative features of the validation set early in 
training. 

The results from the behavioral LSTM model are 
a significant breakthrough in the context of this 
study. The leap in fraud recall from ~0.33 (with the 
autoencoders) to 0.97 (with the LSTM) directly 
addresses the primary weakness of the 
unsupervised, non-sequential models. 

This success can be attributed to two key factors 
1. Supervised Learning Unlike the autoencoders, 

the LSTM was explicitly trained to recognize 
the patterns of both fraud and genuine 
behavior, allowing it to learn subtle, 
discriminative features that the unsupervised 
models could not. 

2. Sequential Analysis By processing data as a 

time-series, the LSTM is capable of capturing 
temporal dependencies. This confirms the 
hypothesis that fraudulent behavior is not just 
a single anomalous data point, but a pattern of 
actions over time (e.g., swipe speed, typing 
cadence, and navigation flow) that deviates 
from a user's normal sequence. 

The model is not without its trade-offs. The 112 
false positives (112 genuine transactions flagged as 
fraud) are a direct consequence of the model's high 
sensitivity. In a real-world system, this would 
represent an increase in "friction" for legitimate users 
(e.g., triggering secondary authentication). However, 
given the 97% detection rate of actual fraud, this 
balance is highly favorable. A precision of 0.83 for 
fraud is also strong, indicating that when an alert is 
raised, it is correct 83% of the time, leading to a low 
"cry-wolf" rate for security analysts. 

In conclusion, the behavioral LSTM model proves 
that analyzing the sequence of behavioral biometrics 
in a supervised manner is a highly effective strategy 
for fraud detection, far surpassing the capabilities of 
static anomaly detection. 

5.4. Model 4: LSTM-Based Transactional Model 

Table 4: LSTM-Based Transactional Model 
Classification Report. 

 Precision Recall F1-Score Support 

0.0 0.99 0.85 0.91 1516 

1.0 0.56 0.97 0.71 304 

Accuracy   0.87 1820 

Macro Avg 0.78 0.91 0.81 1820 

Weighted Avg 0.92 0.87 0.88 1820 

AUC-ROC 0.9687 

Optimal Threshold 0.1272 

PR AUC 0.8704 
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The final performance evaluation on the test set 
presented in Table 4again showed a massive 
improvement over the initial autoencoder models. 
The model achieved an overall accuracy of 87%. 

The model's primary strength, much like the 
behavioral LSTM, was its outstanding fraud recall of 

0.97. The confusion matrix in Figure5(right) confirms 
this, showing that the model correctly identified 294 
of 304 fraudulent transactions, missing only 10 (False 
Negatives). This is the lowest number of missed 
frauds of any model thus far. 

 
Figure 5: LSTM-Based Transactional Model Evaluation. 

However, this high sensitivity came at a 
significant cost to precision. The model's precision 
for the fraud class was 0.56, with an F1-score of 0.71. 
This is a direct result of the model misclassifying 232 

genuine transactions as fraudulent (False Positives), 
a number more than double that of the behavioral 
LSTM. 

 
Figure 6: LSTM-Based Transactional Model Training Dynamics. 

The model's overall class separation remained 
excellent, with an AUC-ROC of 0.97 (0.9687) shown 
in Figure5 (left). The P-R AUC of 0.87 in Figure5 
(center) further confirmed its strong, albeit less 
balanced, discriminative power. 

As a counterpart to the behavioral model, a 
second LSTM network was trained on sequences of 
transactional data (e.g., transaction amount, type, 
location over time). The 'Transactional Model 
Training Metrics' in Figure 6 shows a stable learning 

process. Both training and validation loss decreased 
consistently, and while the validation precision curve 
showed more volatility than the behavioral model, it 
trended upward and remained high, indicating the 
model successfully generalized. 

The transactional LSTM confirms that sequential 
analysis is a powerful technique, yielding a 97% 
fraud detection rate that is on par with, and even 
slightly superior to, the behavioral LSTM (10 missed 
frauds vs. 17). This indicates that fraudulent 
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transactional sequences (e.g., a series of unusual 
amounts, locations, or frequencies) are a highly 
reliable signal for detection. 

The key finding, however, is the model's trade-off. 
In achieving this near-perfect recall, it generated 232 
false positives. This contrasts sharply with the 
behavioral LSTM, which achieved the same 97% 
recall with only 112 false positives. This implies that 
while fraudulent transactional patterns are distinct, a 
larger number of legitimate transactional patterns 
mimic them, leading to a much higher rate of "false 
alarms." 

When compared, the two LSTM models present 
a clear choice 

 Behavioral LSTM: Highly balanced, with 97% 
recall and high 0.83 precision. It provides a 
low-friction, highly accurate solution. 

 Transactional LSTM: Highly sensitive, with 
97% recall but lower 0.56 precision. It is the 
best model for catching fraud but creates 
significantly more user friction. 

The fact that the two models missed different 
transactions (17 vs. 10) and had different false 
positive profiles suggests they are learning 
complementary patterns. Neither model is a 
complete solution on its own. This strongly motivates 
the use of tree-based models, which can analyze 
these features non-sequentially, and a final ensemble 
model that can combine the high-precision alerts 
from the behavioral model with the high-sensitivity 
alerts from the transactional model. 

5.5. Model 5: LightGBM Classifier 

To complement the sequence-based deep learning 
models, a Light Gradient Boosting Machine 
(LightGBM) classifier was trained. This tree-based 
model is adept at handling high-dimensional, tabular 
data and capturing complex, non-linear interactions 
between features without requiring sequential input. 

Table 5: LightGBM Classification Report. 
 Precision Recall F1-Score Support 

0.0 0.99 0.95 0.97 1117 

1.0 0.94 0.98 0.96 883 

Accuracy   0.97 2000 

Macro Avg 0.97 0.97 0.97 2000 

Weighted Avg 0.97 0.97 0.97 2000 

LightGBM Accuracy 0.967 

LightGBM AUC-ROC 0.9959404285260937 

The performance of the LightGBM model, 
detailed in Table was exceptional, achieving a 97% 
overall accuracy and a weighted F1-score of 0.97. This 
performance represents the most balanced and 

effective result of any single model tested. 
The model's strength is evident in its handling of 

the fraud class. It achieved a fraud recall of 0.98 and 
a fraud precision of 0.94, resulting in a best-in-class 
F1-score of 0.96 for fraud detection. The confusion 
matrix in Figure 7 (top right) quantifies this: the 
model correctly identified 868 fraudulent 
transactions while missing only 15 (False Negatives). 
Furthermore, it generated only 51 false positives, 
demonstrating a remarkable ability to detect fraud 
without unduly penalizing legitimate users. 

The diagnostic plots in Figure 7 confirm their 
superior discriminative power. The ROC curve and 
P-R curve both yielded an AUC of 0.99 (0.996 and 
0.99 respectively), indicating a near-perfect ability to 
distinguish between classes and maintain high 
precision across all recall thresholds. 

The LightGBM model's performance is a pivotal 
finding. It not only matches the 98% recall of the best 
LSTM model but also drastically improves the fraud 
precision from 0.83 (behavioral LSTM) and 0.56 
(transactional LSTM) to an outstanding 0.94. This 
demonstrates that for this dataset, the gradient-
boosted tree is a highly effective standalone classifier 
and can find discriminative patterns that the 
sequential models may overlook. 

A significant advantage of the LightGBM model is 
its interpretability, as shown in the 'Top 10 Features 
(Gain)' plot in Figure 7 (bottom right). This plot 
provides critical insights into the drivers of fraud 
detection. It reveals that Transaction Longitude, 
ScrollingSpeed, and TransactionLatitude are by far 
the most important features. 

This is a key discovery: the model's decisions are 
dominated by a combination of transactional data 
(geospatial coordinates) and behavioral biometrics 
(scrolling speed). This strongly supports the paper's 
core hypothesis that a hybrid approach is optimal. 
Features from both domains—TypingSpeed, 
TransactionAmount, LocationConsistency, 
TapDuration, TypingPressure, GestureFrequency, 
and SwipeSpeed—all contribute significantly to the 
model's predictive power. The model is clearly 
leveraging the combination of behavioral and 
transactional data to achieve its high accuracy. 

In summary, the LightGBM model serves as a 
powerful baseline, demonstrating that a 
sophisticated tree-based model can outperform even 
complex deep learning models in both accuracy and 
balance. Its high precision and recall, combined with 
its feature interpretability, make it a strong candidate 
for a production system. This sets a very high bar for 
the final ensemble model to beat. 
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Figure 7: LightGBM Model Diagnostics. 

5.6. Model 6: XGBoost Classifier 

To validate the strong performance of the tree-
based approach, an XGBoost classifier was trained on 

the same hybrid feature set. The results, shown in 
Table 6, are strikingly similar to the LightGBM 
model, confirming the robustness of gradient 
boosting for this task. 

Table 6: XGBoost Classification Report. 
 Precision Recall F1-Score Support 

0.0 0.99 0.95 0.97 1117 

1.0 0.94 0.98 0.96 883 

Accuracy   0.96 2000 

Macro Avg 0.96 0.97 0.96 2000 

Weighted Avg 0.97 0.96 0.96 2000 

XGBoostAccuracy 0.964 

XGBoostAUC-ROC 0.9956109178545104 

The model achieved 96% accuracy (0.964) with a 
weighted F1-score of 0.96. Its performance on the 
fraud class was nearly identical to the LightGBM, 
with a fraud recall of 0.98 and fraud precision of 0.94, 
leading to a 0.96 F1-score. The confusion matrixin 
Figure 8 (top right) reinforces this, showing an 
identical 15 missed frauds (False Negatives) and a 
nearly identical 57 false positives (compared to 51 for 

LightGBM). 
The diagnostic plots in Figure 8 also mirror the 

LightGBM's near-perfect performance, with an AUC-
ROC of 0.996 and a P-R AUC of 0.99. 

The XGBoost results serve as a powerful 
validation of the findings from the LightGBM model. 
The fact that two different leading gradient-boosting 
implementations achieved almost identical, best-in-
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class performance provides high confidence that this 
level of accuracy is both achievable and replicable. 

The most interesting finding comes from 
comparing the XGBoost 'Top 10 Features (Weight)' 
plot in Figure 8 (bottom right) with the LightGBM 

feature gain plot. While LightGBM prioritized 
geospatial data (TransactionLongitude), XGBoost's 
most important feature by F-score (which measures 
how often a feature is used to split the data) was 
TypingSpeed. 

 
Figure 8: XGBoost Model Diagnostics. 

This difference is highly significant. It suggests 
that while both models arrive at the same conclusion, 
they may be using slightly different logic. The 
XGBoost model places a behavioral biometric 
(TypingSpeed) as the single most decisive feature, 
followed by LocationConsistency and 
TypingPressure. The LightGBM, by contrast, focused 
on raw geospatial data and ScrollingSpeed. 

However, the overall picture remains consistent: 
in both models, the top features are a rich mix of 
behavioral biometrics (typing speed, pressure, 
gesture frequency, swipe speed, etc.) and 
transactional data (location, amount, geolocation 
velocity). This cross-domain importance is the key 
takeaway. 

The near-identical performance of LightGBM and 
XGBoost, despite their different feature importance 
rankings, confirms that the hybrid dataset is 

information-rich. Multiple features are capable of 
capturing the discriminative signals of fraud, making 
the models robust. This finding strongly suggests 
that the final stacked ensemble, which is designed to 
leverage the best predictions from all models, has a 
firm foundation to build upon. 

5.7. Model 7: Stacked Ensemble Model 

Finally, a stacked ensemble model was 
constructed to synthesize the predictions of the 
individual base models. The ensemble used the 
outputs from the autoencoders, the LSTM models, 
LightGBM, and XGBoost as inputs (meta-features) 
for a final logistic regression meta-learner. This 
approach aims to leverage the complementary 
strengths of each model—the anomaly-scoring of the 
autoencoders, the sequential pattern recognition of 
the LSTMs, and the high-performance classification 
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of the tree-based models. 

Table 7: Stacked Ensemble Model Classification Report. 
 Precision Recall F1-Score Support 

0.0 0.98 0.96 0.97 1143 

1.0 0.95 0.97 0.96 857 

Accuracy   0.97 2000 

Macro Avg. 0.96 0.97 0.97 2000 

Weighted Avg. 0.97 0.97 0.97 2000 

The final test evaluation presented in Table 
7demonstrates the most effective balance of all 

models, achieving a 97% overall accuracy and a 0.97 
weighted F1-score. 

 
Figure 9: Stacked Ensemble Model Diagnostics. 

Performance on the fraud class was outstanding, 
with a precision of 0.95 and a recall of 0.97, resulting 
in a 0.96 F1-score. The confusion matrix in Figure 9 
(top right) shows that the ensemble correctly 
identified 834 fraudulent transactions. It 
misclassified 23 as non-fraudulent (False Negatives) 
and misclassified 45 legitimate transactions as 
fraudulent (False Positives). 

The model's diagnostic curves in Figure 9 (left) 

were near-perfect, with an AUC-ROC of 0.996 and a 
Precision-Recall AUC (AP) of 0.99, indicating 
exceptional and reliable class separation. 

The stacked ensemble model represents the 
optimal solution found in this study, successfully 
balancing the critical trade-off between precision and 
recall. While the LightGBM and XGBoost models 
achieved a slightly higher recall (98% vs. 97%), they 
also produced more false positives (51 and 57, 
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respectively). The ensemble model, by contrast, 
achieved a higher precision (0.95 vs. 0.94) and 
reduced the false positive count to 45, the lowest of 
any high-performing model. 

This is a crucial outcome for a deployable, real-
world system. The ensemble sacrifices a minimal 
amount of recall (missing 8 more frauds than the 
LGBM) to gain a significant reduction in false alarms, 
thereby minimizing friction for legitimate customers. 

The 'Meta-Learner Feature Weights' plot in Figure 
9 (bottom right) provides the most compelling 
insight. It shows the coefficients assigned by the final 
logistic regression meta-learner to the predictions of 
the base models. The plot reveals that the meta-
learner placed the highest importance on the 
LightGBM model's output (coefficient ≈ 5.5), 
followed by the XGBoost model (coefficient ≈ 2.5). 

This finding implies that the meta-learner learned 
that the tree-based models were the most reliable and 
decisive predictors. The information from the 
autoencoder and LSTM models was likely found to 
be already captured, or even surpassed, by the 

gradient-boosting models, which were trained on the 
full set of hybrid features. 

In conclusion, the stacked ensemble successfully 
refined the predictions of the best-in-class tree 
models, producing a final classifier with the best 
balance of high-sensitivity fraud detection (97% 
recall) and high-confidence, low-friction alerts (95% 
precision, lowest false positives). This result confirms 
the paper's hypothesis that a hybrid framework, 
culminating in an ensemble that leverages the 
strengths of diverse models, provides a robust and 
highly deployable solution for mobile banking fraud 
detection. 

6. PREDICTION EXAMPLE 

To further exemplify the predictive capacity of the 
developed ensemble fraud detection model, a case-
based evaluation was performed on selected 
instances from the testing dataset. Table 8 displays 
the input features for the first five samples, and Table 
9 presents their corresponding true fraud labels. 

Table 8: Selected Feature Inputs from Test Data. 

 Behavioral error Transaction error 
Transaction 

Hour 
Dow 

Time since 
last 

Typing 
speed 

Typing 
Pressure 

Swipe Speed 

8000 0.514483 1.183499 12 1 0.0 243.453684 0.771613 760.610994 

8001 0.198513 2.008416 12 1 60.0 180.966235 0.490504 562.882771 

8002 0.414494 1.038565 12 1 60.0 250.338927 0.816292 810.838069 

8003 0.334070 0.836627 12 1 60.0 185.973378 0.451543 604.062186 

8004 0.188085 0.850656 12 1 60.0 242.596600 0.691854 721.004786 

Tap Duration Scrolling speed … 
Transaction 
Longitude 

Success Failure 
Status 

Authentication 
Attempts 

MFA Trigger 
Holiday 
Indicator 

158.001258 603.435294 … -121.815354 0 1 1.0 0.0 

105.103620 289.830191 … -122.492446 1 0 0.0 0.0 

141.291019 525.320527 … -121.961113 0 3 1.0 0.0 

102.434831 298.492526 … -122.367992 1 1 1.0 0.0 

150.078934 532.826997 … -122.044409 0 1 1.0 0.0 

Event Based Indicator Time Consistency Transaction Frequency Location Consistency Geolocation Velocity 

0 1.0 5 0.004610 0.000000 

0 1.0 5 0.173275 0.171206 

0 1.0 1 0.085234 0.131215 

0 1.0 2 0.090637 0.141121 

0 1.0 4 0.055433 0.145750 

For instance, sample 8000 exhibited moderately 
high reconstruction errors for both behavioral 
(0.4856) and transactional (1.1833) dimensions, 
coupled with an active multifactor authentication 
(MFATrigger = 1.0) and immediate transaction 
timing (time_since_last = 0 seconds). The ensemble 
model correctly predicted this instance as fraud (True 
Label = 1), indicating its sensitivity to subtle 
deviations in user behavior and transaction patterns. 
In contrast, sample 8001, although displaying a 
higher transactional error (2.0089), had a normal 
behavioral error and no triggered MFA (MFATrigger 

= 0.0), and was correctly classified as a non-
fraudulent transaction (True Label = 0). 

Table 9: Corresponding True Labels. 
 Label 

8000 1.0 

8001 0.0 

8002 1.0 

8003 0.0 

8004 1.0 

Such granular analysis underscores the model’s 
capacity to interpret a complex interplay of 
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behavioral and transactional signals rather than 
relying on singular feature anomalies. The 
ensemble’s high accuracy in these prediction 
examples reflects the robustness of the integrated 
decision-making mechanism, enhancing real-world 
trustworthiness for mobile banking fraud prevention 
systems. 

7. CONCLUSION 

This study successfully designed, implemented, 
and evaluated a multi-faceted hybrid deep learning 
framework for fraud detection in mobile banking. 
The primary objective—to develop a highly accurate 
and robust system suitable for real-world 
deployment by balancing high recall with minimal 
false alarms—was achieved. 

The investigation systematically demonstrated a 
clear progression in model efficacy. Initial 
unsupervised autoencoder models, while effective at 
profiling "normal" user activity, proved insufficient 
for comprehensive fraud detection, failing to identify 
over 65% of fraudulent transactions. The 
introduction of supervised, sequential LSTM 
networks marked a significant breakthrough, 
proving that temporal patterns within both 
behavioral biometrics and transactional data are 
highly discriminative. These models achieved 
exceptional fraud recall (97%), but also highlighted a 
critical trade-off between the high precision of the 
behavioral model and the high sensitivity of the 
transactional model. 

The gradient boosting models, LightGBM and 
XGBoost, outperformed all other single classifiers, 
delivering a near-perfect balance of 98% recall and 
94% precision. Crucially, their feature importance 
analysis provided empirical validation for the 
paper's core hypothesis: the most predictive features 
were a distinct combination of transactional data 
(e.g., TransactionLongitude) and behavioral 
biometrics (e.g., ScrollingSpeed, TypingSpeed). 

The final stacked ensemble model, which learned 
to weigh the predictions of the base classifiers, 
yielded the optimal solution for deployment. It 
achieved an outstanding 97% accuracy, 97% fraud 
recall, and 95% fraud precision, resulting in the 
lowest false positive rate of any high-performing 
model. This outcome represents a system that 
maximizes fraud capture while minimizing the 
operational cost and customer friction associated 
with false alarms. 

The findings confirm that combining behavioral 
biometrics with transactional data in a sophisticated, 
hybrid machine learning framework provides a 
solution that is demonstrably more robust and 
balanced than any single data stream or model 
architecture alone. 

Future work should focus on the real-world 
deployment of this ensemble, including latency 
optimization for real-time transaction scoring. 
Further research could also explore the framework's 
adaptability against evolving fraud tactics and its 
generalizability across different financial datasets. 

REFERENCES 

Aburbeian, A. M., & Ashqar, H. I. (2023, May). Credit card fraud detection using enhanced random forest 
classifier for imbalanced data. In International Conference on Advances in Computing Research (pp. 605–
616). Cham: Springer Nature Switzerland. 

Alfaiz, N. S., & Fati, S. M. (2022). Enhanced credit card fraud detection model using machine learning. 
Electronics, 11(4), 662. 

Ali, A. A., Khedr, A. M., El-Bannany, M., & Kanakkayil, S. (2023). A powerful predicting model for financial 
statement fraud based on optimized XGBoost ensemble learning technique. Applied Sciences, 13(4), 2272. 

Ali, A., Abd Razak, S., Othman, S. H., Eisa, T. A. E., Al-Dhaqm, A., Nasser, M., ... & Saif, A. (2022). Financial 
fraud detection based on machine learning: A systematic literature review. Applied Sciences, 12(19), 9637. 

Alghofaili, Y., Albattah, A., & Rassam, M. A. (2020). A financial fraud detection model based on LSTM deep 
learning technique. Journal of Applied Security Research, 15(4), 498–516. 

Alkhateeb, Z. K., & Maolood, A. T. (2019). Machine learning-based detection of credit card fraud: A comparative 
study. American Journal of Engineering and Applied Sciences, 12(4), 535. 

Al-Okaily, M., Alalwan, A. A., Al-Fraihat, D., Alkhwaldi, A. F., Rehman, S. U., & Al-Okaily, A. (2024). 
Investigating antecedents of mobile payment systems’ decision-making: A mediated model. Global 
Knowledge, Memory and Communication, 73(1/2), 45–66. 

Al-Okaily, M., Lutfi, A., Alsaad, A., Taamneh, A., & Alsyouf, A. (2020). The determinants of digital payment 
systems’ acceptance under cultural orientation differences: The case of uncertainty avoidance. 
Technology in Society, 63, 101367. 

Al-Qadi, N. S. (2018). ‘Information communication technology influence on E-Payment adoption’: A point of 
view of banking institutions in Jordan. International Journal of Computer Applications, 975, 1–5. 



287 
A HYBRID MACHINE-LEARNING FRAMEWORK FOR FRAUD DETECTION IN MOBILE BANKING 

USING BEHAVIORAL BIOMETRICS AND TRANSACTIONAL PATTERNS 
 

SCIENTIFIC CULTURE, Vol. 12, No 2.1, (2026), pp. 271-290 

Al-Sabaawi, M. Y. M., Alshaher, A. A., & Alsalem, M. A. (2023). User trends of electronic payment systems 
adoption in developing countries: An empirical analysis. Journal of Science and Technology Policy 
Management, 14(2), 246–270. 

Arjunwadkar, P. Y. (2018). FinTech: The technology driving disruption in the financial services industry. Wiley. 
Aslam, F., Hunjra, A. I., Ftiti, Z., Louhichi, W., & Shams, T. (2022). Insurance fraud detection: Evidence from 

artificial intelligence and machine learning. Research in International Business and Finance, 62, 101744. 
Aziz, R. M., Baluch, M. F., Patel, S., & Ganie, A. H. (2022). LGBM: A machine learning approach for Ethereum 

fraud detection. International Journal of Information Technology, 14(7), 3321–3331. 
Benchaji, I., Douzi, S., & El Ouahidi, B. (2021). Credit card fraud detection model based on LSTM recurrent 

neural networks. Journal of Advances in Information Technology, 12(2), 113–118. 
Bello, O. A., & Olufemi, K. (2024). Artificial intelligence in fraud prevention: Exploring techniques and 

applications challenges and opportunities. Computer Science & IT Research Journal, 5(6), 1505. 
Bhavitha, B. K., Rodrigues, A. P., & Chiplunkar, N. N. (2017). Comparative study of machine learning 

techniques in sentimental analysis. In Proceedings of the 2017 International Conference on Inventive 
Communication and Computational Technologies (ICICCT), Coimbatore, India, 10–11 March 2017, 216–221. 

Carcillo, F., Borgne, Y. L., Caelen, O., Kessaci, Y., Oblé, F., & Bontempi, G. (2019). Combining unsupervised and 
supervised learning in credit card fraud detection. Information Sciences, 557, 317. 

Carneiro, E. M., Dias, L. A. V., Da Cunha, A. M., & Mialaret, L. F. S. (2015). Cluster analysis and artificial neural 
networks: A case study in credit card fraud detection. In 2015 12th International Conference on Information 
Technology-New Generations (pp. 122–126). IEEE. 

Chalapathy, R., & Chawla, S. (2019). Deep learning for anomaly detection: A survey. arXiv (Cornell University). 
Chang, V., Ali, B. A. A., Golightly, L., Ganatra, M. A., & Mohamed, M. (2024). Investigating credit card payment 

fraud with detection methods using advanced machine learning. Information, 15(8), 478. 
Chang, V., Di Stefano, A., Sun, Z., & Fortino, G. (2022). Digital payment fraud detection methods in digital ages 

and Industry 4.0. Computers and Electrical Engineering, 100, 107734. 
Dileep, M. R., Navaneeth, A. V., & Abhishek, M. (2021). A novel approach for credit card fraud detection using 

decision tree and random forest algorithms. In 2021 Third International Conference on Intelligent 
Communication Technologies and Virtual Mobile Networks (ICICV), 1025–1028. IEEE. 

Dornadula, V. N., & Geetha, S. (2019). Credit card fraud detection using machine learning algorithms. Procedia 
Computer Science, 165, 631. 

Douiba, M., Benkirane, S., Guezzaz, A., & Azrour, M. (2023). An improved anomaly detection model for IoT 
security using decision tree and gradient boosting. The Journal of Supercomputing, 79(3), 3392–3411. 

Du, H., Lv, L., Guo, A., & Wang, H. (2023). AutoEncoder and LightGBM for credit card fraud detection 
problems. Symmetry, 15(4), 870. 

Faraji, Z., & States, U. (2022). A review of machine learning applications for credit card fraud detection with a 
case study. J. Manag, 5, 49–59. 

Forough, J., & Momtazi, S. (2020). Ensemble of deep sequential models for credit card fraud detection. Applied 
Soft Computing, 99, 106883. 

Guezzaz, A., Benkirane, S., Azrour, M., & Khurram, S. (2021). A reliable network intrusion detection approach 
using decision tree with enhanced data quality. Security and Communication Networks, 2021(1), 1230593. 

Gupta, A., Lohani, M. C., & Manchanda, M. (2021). Financial fraud detection using naive bayes algorithm in 
highly imbalanced data set. Journal of Discrete Mathematical Sciences and Cryptography, 24(5), 1559–1572. 

Gupta, A., Yousaf, A., & Mishra, A. (2020). How pre-adoption expectancies shape post-adoption continuance 
intentions: An extended expectation-confirmation model. Int. J. Inf. Manag., 52, 102094. 

Hancock, J. T., & Khoshgoftaar, T. M. (2021). Gradient boosted decision tree algorithms for medicare fraud 
detection. SN Computer Science, 2(4), 268. 

Hajek, P., Abedin, M. Z., & Sivarajah, U. (2023). Fraud detection in mobile payment systems using an XGBoost-
based framework. Information Systems Frontiers, 25(5), 1985–2003. 

Hassan, M. A., Shukur, Z., & Hasan, M. K. (2021). Electronic wallet payment system in Malaysia. Data Analytics 
and Management, Springer, 711–736. 

Hung, W., Tseng, C., Chang, F., & Ho, C. (2021). Effects of utilitarian and hedonic emotion on the use of online 
banking services. J. Glob. Inf. Manag., 29(6), 1–20. 

Ileberi, E., Sun, Y., & Wang, Z. (2022). A machine learning based credit card fraud detection using the GA 
algorithm for feature selection. Journal of Big Data, 9(1), 24. 



288 MD TUHIN RANA et al. 
 

SCIENTIFIC CULTURE, Vol. 12, No 2.1, (2026), pp. 271-290 

Itoo, F., Meenakshi, & Singh, S. (2021). Comparison and analysis of logistic regression, Naïve Bayes and KNN 
machine learning algorithms for credit card fraud detection. International Journal of Information 
Technology, 13(4), 1503–1511. 

Jan, C. L. (2021). Detection of financial statement fraud using deep learning for sustainable development of 
capital markets under information asymmetry. Sustainability, 13(17), 9879. 

Jemima Jebaseeli, T., Venkatesan, R., & Ramalakshmi, K. (2021). Fraud detection for credit card transactions 
using random forest algorithm. In Intelligence in Big Data Technologies—Beyond the Hype: Proceedings of 
ICBDCC 2019, 189–197. Springer Singapore. 

Jeragh, M., & Alsulaimi, M. (2018). Combining auto encoders and one class support vector machine for 
fraudulent credit card transactions detection. In Proceedings of the 2018 Second World Conference on Smart 
Trends in Systems, Security and Sustainability (WorldS4), London, UK, 30–31 October 2018, 178–184. 

Kabir, M. A., Saidin, S. Z., & Ahmi, A. (2015). Adoption of e-payment systems: A review of literature. In 
International Conference on E-Commerce, Kuching, Sarawak, 112–120. 

Keskenler, M. F., Dal, D., & Aydın, T. (2021). Yapay zeka destekli ÇOKS yöntemi ile kredi kartı sahtekarlığının 
tespiti. El-Cezeri Fen ve Mühendislik Dergisi. 

Khalid, A. R., Owoh, N., Uthmani, O., Ashawa, M., Osamor, J., & Adejoh, J. (2024). Enhancing credit card fraud 
detection: An ensemble machine learning approach. Big Data and Cognitive Computing, 8(1), 6. 

Khando, K., Islam, M. S., & Gao, S. (2022a). Factors shaping the cashless payment ecosystem: Understanding 
the role of participating actors. In 35th Bled eConference-Digital Restructuring and Human (Re) action, Bled, 
Slovenia, June 26–29, 2022, 161–186. University of Maribor University Press. 

Khando, K., Islam, M. S., & Gao, S. (2022b). The emerging technologies of digital payments and associated 
challenges: A systematic literature review. Future Internet, 15(1), 21. 

Lonkani, R., Changchit, C., Klaus, T., & Sampet, J. (2020). A comparative study of trust in mobile banking: An 
analysis of US and Thai customers. J. Glob. Inf. Manag., 28(4), 95–119. 

Madhurya, M. J., Gururaj, H. L., Soundarya, B. C., Vidyashree, K. P., & Rajendra, A. B. (2022). Exploratory 
analysis of credit card fraud detection using machine learning techniques. Global Transitions Proceedings, 
3(1), 31–37. 

Makki, S., Haque, R., Taher, Y., Assaghir, Z., Hacid, M. S., & Zeineddine, H. (2018, December). A cost-sensitive 
cosine similarity K-nearest neighbor for credit card fraud detection. In Big Data and Cyber-security 
Intelligence. 

Malaquias, R. F., Malaquias, F. F., Ha, Y. M., & Hwang, Y. (2021). A cross-country study on intention to use 
mobile banking: Does computer self-efficacy matter? J. Glob. Inf. Manag., 29(2), 102–117. 

Malini, N., & Pushpa, M. (2017, February). Analysis on credit card fraud identification techniques based on 
KNN and outlier detection. In 2017 Third International Conference on Advances in Electrical, Electronics, 
Information, Communication and Bio-informatics (AEEICB) (pp. 255–258). IEEE. 

Manek, H., Kataria, N., Jain, S., & Bhole, C. (2019). Various methods for fraud transaction detection in credit 
cards. Journal of Ubiquitous Systems and Pervasive Networks, 12(1), 25. 

Mareeswari, V., & Gunasekaran, G. (2016). Prevention of credit card fraud detection based on HSVM. In 
Proceedings of the 2016 International Conference on Information Communication and Embedded Systems 
(ICICES), Chennai, India, 25–26 February 2016, 1–4. 

Mehdary, A., Chehri, A., Jakimi, A., & Saadane, R. (2024). Hyperparameter optimization with genetic 
algorithms and XGBoost: A step forward in smart grid fraud detection. Sensors, 24(4), 1230. 

Mehana, A., & Pireva, K. (2020). Fraud detection using data-driven approach. arXiv (Cornell University). 
Meng, W., Wang, Y., Wong, D. S., Wen, S., & Xiang, Y. (2018). TouchWB: Touch behavioral user authentication 

based on web browsing on smartphones. Journal of Network and Computer Applications, 117, 1–9. 
Ming-Yen Teoh, W., Choy Chong, S., Lin, B., & Wei Chua, J. (2013). Factors affecting consumers’ perception of 

electronic payment: An empirical analysis. Internet Research, 23(4), 465–485. 
Mishra, K. N., & Pandey, S. C. (2021). Fraud prediction in smart societies using logistic regression and k-fold 

machine learning techniques. Wireless Personal Communications, 119(2), 1341–1367. 
Mhamane, S. S., & Lobo, L. M. R. J. (2012). Internet banking fraud detection using HMM. In Proceedings of the 

2012 Third International Conference on Computing, Communication and Networking Technologies 
(ICCCNT’12), Karur, India, 26–28 July 2012, 1–4. 

Modi, K., & Dayma, R. (2017). Computing and control (I2C2), review on fraud detection methods in credit card 
transactions. 2017 International Conference on Intelligent, IEEE. 



289 
A HYBRID MACHINE-LEARNING FRAMEWORK FOR FRAUD DETECTION IN MOBILE BANKING 

USING BEHAVIORAL BIOMETRICS AND TRANSACTIONAL PATTERNS 
 

SCIENTIFIC CULTURE, Vol. 12, No 2.1, (2026), pp. 271-290 

Namweli, H., & Magali, J. (2018). Factors affecting adoption of prepaid electronic payment cards in Tanzania: 
The case study of Kilimanjaro Christian Medical Centre (KCMC). African Journal of Business 
Management, 2(1), 1–14. 

Naeem, A., Javaid, N., Aslam, Z., Nadeem, M. I., Ahmed, K., Ghadi, Y. Y., & Eldin, S. M. (2023). A novel data 
balancing approach and a deep fractal network with light gradient boosting approach for theft 
detection in smart grids. Heliyon, 9(9). 

Nguyen, T. D., & Huynh, P. A. (2018). The roles of perceived risk and trust on E–payment adoption. In 
International Econometric Conference of Vietnam, Springer, Cham, 926–940. 

Omigie, N. O., Zo, H., Ciganek, A. P., & Jarupathirun, S. (2020). Understanding the continuance of mobile 
financial services in Kenya: The roles of utilitarian, hedonic, and personal values. J. Glob. Inf. Manag., 
28(3), 36–57. 

Owolafe, O., Ogunrinde, O. B., & Thompson, A. F. B. (2021). A long short term memory model for credit card 
fraud detection. In Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or 
Opportunities, 369–391. Cham: Springer International Publishing. 

Pan, E. (2024). Machine learning in financial transaction fraud detection and prevention. Transactions on 
Economics Business and Management Research, 5, 243. 

Rajak, I., & Mathai, K. J. (2015). Intelligent fraudulent detection system based SVM and optimized by danger 
theory. In Proceedings of the 2015 International Conference on Computer, Communication and Control (IC4), 
Indore, India, 10–12 September 2015, 1–4. 

Rzayeva, D., & Malekzadeh, S. (2022). A combination of deep neural networks and K-nearest neighbors for 
credit card fraud detection. arXiv (Cornell University). 

Sadgali, I., Sael, N., & Benabbou, F. (2019). Performance of machine learning techniques in the detection of 
financial frauds. Procedia Computer Science, 148, 45–54. 

Sadgali, I., Sael, N., & Benabbou, F. (2019). Fraud detection in credit card transaction using neural networks. 
Proceedings of the 4th International Conference on Smart City Applications, 1. 

Sun, Q., Tang, T., Chai, H., Wu, J., & Chen, Y. (2021). Boosting fraud detection in mobile payment with prior 
knowledge. Applied Sciences, 11(10), 4347. 

Shree, S., Pratap, B., Saroy, R., & Dhal, S. (2021). Digital payments and consumer experience in India: A survey 
based empirical study. Journal of Banking and Financial Technology, 5, 1–20. 

Strelcenia, E., & Prakoonwit, S. (2023). A survey on GAN techniques for data augmentation to address the 
imbalanced data issues in credit card fraud detection. Machine Learning and Knowledge Extraction, 5(1), 
304. 

Tran, T. A. (2022). On some studies of fraud detection pipeline and related issues from the scope of ensemble 
learning and graph-based learning. arXiv (Cornell University). 

Tripathi, K. K., & Pavaskar, M. A. (2012). Survey on credit card fraud detection methods. International Journal of 
Emerging Technology and Advanced Engineering, 2(11), 721–726. 

Ugale, M., & Midhunchakkaravarthy, J. (2023). Machine learning-based image forgery detection using light 
gradient-boosting machine. In Congress on Intelligent Systems, 463–476. Singapore: Springer Nature. 

Vassallo, D., Vella, V., & Ellul, J. (2021). Application of gradient boosting algorithms for anti-money laundering 
in cryptocurrencies. SN Computer Science, 2(3), 143. 

Vanini, P., Rossi, S., Zvizdic, E., & Domenig, T. (2023). Online payment fraud: From anomaly detection to risk 
management. Financial Innovation, 9(1), 66. 

Vimal, S., Kayathwal, K., Wadhwa, H., & Dhama, G. (2021). Application of deep reinforcement learning to 
payment fraud. arXiv (Cornell University). 

Vishwakarma, M., & Kesswani, N. (2023). A new two-phase intrusion detection system with Naïve Bayes 
machine learning for data classification and elliptic envelope method for anomaly detection. Decision 
Analytics Journal, 7, 100233. 

Wamba, S. F., Queiroz, M. M., Blome, C., & Sivarajah, U. (2021). Fostering financial inclusion in a developing 
country: Predicting user acceptance of mobile wallets in Cameroon. J. Glob. Inf. Manag., 29(4), 195–220. 

Zarezadeh, M. R., Aboonajmi, M., & Ghasemi Varnamkhasti, M. (2021). Fraud detection and quality assessment 
of olive oil using ultrasound. Food Science & Nutrition, 9(1), 180–189. 

Zhang, Y., & Trubey, P. (2019). Machine learning and sampling scheme: An empirical study of money 
laundering detection. Computational Economics, 54(3), 1043–1063. 



290 MD TUHIN RANA et al. 
 

SCIENTIFIC CULTURE, Vol. 12, No 2.1, (2026), pp. 271-290 

Zhang, Q. (2022). Financial data anomaly detection method based on decision tree and random forest algorithm. 
Journal of Mathematics, 2022(1), 9135117. 


