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ABSTRACT

This study examines the JO-Traffic-Accidents-Dataset (JO-TAD), which comprises 73,095 traffic accident data
from Jordan (2018), utilising sophisticated deep learning models with uncertainty quantification. We present
an ensemble approach that integrates ResNet, DenseNet, and Transformer architectures with Monte Carlo
dropout to forecast accident severity and evaluate prediction confidence. Our model attains an accuracy of
92.7%, surpassing prior methodologies like as Random Forests (85.3%), XGBoost (87.1%), and fundamental
neural networks (86.2%). The self-attention-based model achieves a commendable performance of 91.8% by
effectively capturing intricate component interactions. Significant contributing factors comprise weather
(0.87), road type (0.81), and driver age (0.75). Accidents occurring at night in rural regions during winter months
exhibit greater severity and forecast uncertainty. For instance, the winter months exhibit a 23% escalation in
severity and elevated average entropy (1.32 compared to 0.87 in summer). Our system enhances road safety
policy by delivering predictions with accompanying uncertainty measurements, thereby optimising resource
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allocation and facilitating targeted actions. This paradigm offers essential decision-making assistance for
traffic safety authorities in developing nations, potentially alleviating the significant economic impact of
traffic accidents via uncertainty-informed resource distribution and focused interventions.

KEYWORDS: Traffic Accidents, Deep Learning, Ensemble Learning, Uncertainty Quantification, Monte
Carlo Dropout, Accident Prediction, Road Safety, Jordan.
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1. INTRODUCTION

Global estimates from the World Health
Organisation (WHO) reveal that fatalities and
disabilities resulting from traffic accidents have
reached unprecedented levels, driven by rapid
urbanisation and motorisation in developing
countries, presenting a significant public health
challenge in the 21st century [1]. Traffic accidents
constitute a strategic issue in Jordan, attributable to
urbanisation, growth, and the increasing prevalence
of automobile ownership in a quickly rising
developing nation. In contrast to High-Income
Countries (HICs), where most traffic fatality research
has been conducted, Low- and Middle-Income
Countries (LMICs) represent 93% of worldwide
traffic fatalities while possessing only 60% of the
world's  registered automobiles. Jordan, a
representative low- and middle-income country in
the MENA region, has distinctive and underexplored
difficulties, including growing urbanisation, inadequate
infrastructure development, and cultural factors that
remain ignored in the majority of existing predictive
models, which are primarily based on high-income
nations. The World Health Organisation (WHO)
reported that approximately 93% of global
transportation-related  fatalities, encompassing
vehicles, two-wheeled transport, and pedestrians,
occur in low- and middle-income countries (LMICs),
which account for merely 60% of the world's
registered vehicles. The Hashemite Kingdom of
Jordan, centrally located in the Middle East, has
experienced a significant increase in vehicular traffic
during the past decade. Jordan is under strain on its
transport infrastructure due to ongoing economic
development and population growth, establishing it
as a regional transit hub. Transportation-related
accidents inflict an annual financial burden of almost
4% of GDP on the nation, with costs incurred both
economically and in terms of human impact. Machine
learning methodologies provide unparalleled capacity
to analyse vast datasets and identify intricate links that
standard statistical methods may overlook. Al-
Khateeb et al. have demonstrated that machine
learning can effectively analyse traffic safety,
yielding excellent results in identifying risk
indicators and predicting traffic accident severity,
with a predictive accuracy over 85% [5]. Previous
research has employed Random Forest, XGBoost,
and Neural Networks to forecast the severity of
vehicular accidents [6, 7]. Nonetheless, these models
possess an inherent limitation: they produce point
forecasts without quantifying the uncertainty
associated with those predictions. For policymakers
and traffic safety experts, comprehending the

confidence level of a model in its predictions is
equally crucial as the predictions themselves.
Scenarios characterised by significant prediction
uncertainty should not be subjected to the same
intervention technique as those with a high degree of
confidence. We expand upon prior research and
provide a deep ensemble learning system that
incorporates intrinsic uncertainty quantification. The
foundation of the proposed system is further augmented
by a deep learning model that enhances overall
predictive accuracy and confidence, facilitating
superior decision-making beyond merely indicating
that a certain vehicle is likely to crash. Measuring
uncertainty enables the identification of corner
situations where the model exhibits poor predicted
confidence, sometimes associated with specific
incidents warranting further research or concern.

2. RELATED WORK

Significant advancements have occurred in traffic
safety studies during the past few decades [7, 8].
Haddon's work from 1968 onwards significantly
influenced the contemporary view of traffic accidents
as the interplay of human, vehicle, and environmental
elements, which forms the basis of modern causation
theories in accidents [9].

In the Middle East, Mohammad et al. [7]

examined how, in rapidly developing countries,
infrastructure frequently fails to meet contemporary
travel demands. Their examination of traffic patterns
in the Gulf Cooperation Council nations underscored
the significant influence of the region's cultural and
environmental contexts on accident dynamics.The
analysis of traffic safety has been transformed by the
application of machine learning techniques. Zhu et
al. Numerous studies demonstrate the efficacy of
ensemble learning techniques, particularly Random
Forests and XGBoost models, in forecasting accident
severity across diverse urban environments [10].
Utilising more than 100,000 reported incidents in
Beijing, they attained forecast accuracies of up to
89%, setting new benchmarks for the discipline.
In this domain, deep learning techniques have
exhibited considerable promise. Chen and Wang [11]
concentrated on temporal patterns for accident
prediction, employing neural networks to identify
these patterns, resulting in highly accurate forecasts
and highlighting time intervals with elevated
accident risk. By integrating their models with
meteorological and traffic flow data, they identified
nuanced connections among risk factors.

Research on the MENA (Middle East and North
Africa) region has identified certain regional
difficulties and opportunities [12]. Numerous risk
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factors contribute to accidents in Jordan [2, 4, 7],
including

¢ Fast urbanization and infrastructure expansion.

e Moreover, driving during rain is another

challenge.

o Cultural factors affecting driving style.

e Different degrees of law enforcement

effectiveness.

Rahman et al. [13] validated those findings in a
machine-learning investigation of traffic accidents in
Saudi Arabia. Both studies highlight the significant
influence of local context on model performance and
the necessity for region-specific methodologies in
traffic safety modelling.

Recent improvements in predictive modelling
have transformed the capacity for accident risk
assessment. To enhance predictive performance, Lee
and Kim [14] presented ensemble approaches that
integrate many machine learning algorithms. Their
hybrid methodology, employing Random Forests
and neural networks, proved to be highly effective in
assessing accident severity under diverse environmental
situations.

Zhao et al. demonstrated that XGBoost efficiently
predicts imbalanced accident data, a prevalent issue
in traffic safety [15]. This innovative feature
engineering and modelling methodology would
establish a benchmark for investigations with
constrained data, particularly in resource-poor
environments.

Thompson et al. [16] established substantial
connections between meteorological phenomena and

accident severity, especially in regions marked by

seasonal variation. By employing specialised
meteorological data, they successfully predicted the
risk of accidents wunder diverse weather
circumstances.

Despite these notable advancements, substantial
gaps persist in the existing literature
1. Most models provide point
without uncertainty measures.
2. Limited research on ensemble deep learning
for accident severity prediction.
3. Few studies integrate uncertainty quantification
with predictive models.
4. Regional and cultural aspects are often
neglected in model development.
5. The temporal and spatial variations in
prediction confidence are rarely analysed.
This paper fills existing gaps by creating a deep
ensemble learning method that incorporates
uncertainty quantification, specifically designed for
the Jordanian environment.

3. METHODOLOGY

predictions

We suggested a comprehensive methodology
utilising advanced deep learning architectures
integrated with uncertainty quantification to predict
the severity of traffic accidents. We employ cutting-
edge neural network topologies for prediction and
integrate meticulous uncertainty assessment to
provide both precise forecasts and dependable trust
in them. Figure 1 delineates the comprehensive
framework of our methodology.

Figure 1: Proposed Deep Learning Ensemble Framework with Uncertainty Quantification.
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3.1. Data Preparation and Pre-processing

This study utilised the Dataset of Jordanian Road
Traffic Accidents Reports [17]. It can be located on
Mendeley Data (doi: 10.17632/r6db558376.1). The
collection contains traffic accident reports that have
been fully anonymised, with all personal information
removed prior to public release. The initial phase of
our study was pre-processing the JO-Traffic-Accidents-
Dataset, comprising 73,095 accident reports from 2018.
We employed mode imputation for categorical
variables and mean imputation for numerical
characteristics to preserve the statistical aspects of the
dataset.A key area for enhancement was the
temporal aspect of the data, converting raw dates and
times into features that encapsulate overarching
trends in accident frequency. This included new
elements such as the hour of the day to capture daily
traffic patterns, binary indications for weekends and
weekdays, and the incorporation of seasonal
variations by month. Temporal characteristics were
crucial for modelling time-dependent trends in accident
frequency and severity.Feature engineering extended
beyond temporal effects to encompass interaction
terms between weather conditions and road types,
based on the assumption that weather influences
accident risk variably according to the type of road
on which the event transpires. Additionally, we
developed a dynamic risk score that fluctuates based
on past accident trends.

3.2. Advanced Deep Learning Architectures with
Uncertainty Quantification

The primary contribution of our research is
the creation of an ensemble of sophisticated deep
learning architectures that incorporate uncertainty
quantification. Our methodology utilises cutting-
edge deep learning models such as ResNet,
DenseNet, and Transformer-based architectures,
while delivering reliable estimations of predictive
uncertainty.

3.2.1. Base Model Architectures

Our ensemble incorporates multiple advanced
architectures
1. ResNet-Based Model

We adapted the ResNet architecture for tabular
data analysis by implementing

e Input layer matching the feature
dimensionality

o Initial batch normalization and dense layer
(256 units)

e Residual blocks with skip connections, where
each block contains

¢ Two dense layers (128 units)

e Batch normalization layers

e ReLU activations

e Skip connection with 1x1 projection when

dimensions change.

¢ Global average pooling

¢ Monte Carlo dropout (rate = 0.3)

¢ Dense output layer with softmax activation

Residual connections facilitate the more efficient
training of deeper networks by mitigating the vanishing
gradient issue, hence enabling the model to discern
intricate patterns in the accident data.

2. DenseNet-Based Model

Our DenseNet-based architecture for tabular data
includes

e Input layer with feature normalization.

e 3 dense blocks, where each block contains

e 4 dense layers with growth rate k=32.

¢ Each layer connected to all subsequent layers

within the block.

e Transition layers between dense blocks for

dimensionality reduction.

¢ Monte Carlo dropout (rate = 0.25) for uncertainty

estimation.

¢ Final classification layer with softmax activation.

The intricate connectivity pattern improves feature
propagation and reuse, mitigates the vanishing gradient
issue, and significantly decreases the parameter
count.

In cases of rare severe patterns, ResNet learns
residuals for processing, whereas DenseNet manages
escalating severity through the regulation of
information transmission.

3. Transformer-Based Model

We implemented a novel
architecture adapted for tabular data
Input embedding layer to project features into a
latent space.

e Positional encoding to maintain feature

relationships.

e 4 multi-head self-attention layers (8 heads

each).

¢ Layer normalization and residual connections.

o Feed-forward networks after each attention

block.

e Monte Carlo dropout (rate = 0.2) between

attention layers.

o (lassification head with softmax activation.

The self-attention mechanism allows the model to
discern intricate interactions among many accident
elements without supposing independence or particular
structural linkages. Transformer models analyse temporal
and contextual links. A stratified 5-fold cross-validation
was employed to ensure an equitable distribution of

Transformer
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minority classes throughout the folds.
Each model was trained using
e Adam optimizer with learning rate scheduler
(initial Ir = 0.001, with cosine decay).
e Categorical cross-entropy loss function with
label smoothing (e = 0.1).
e Early stopping based on validation loss
(patience = 20).
¢ Class weighting to address class imbalance.
e Mixed precision training for computational
efficiency.

3.2.2. Ensemble Construction

Our ensemble comprises 10 independently
trained neural networks with the aforementioned
design. Essential components of our ensemble
methodology comprise.

1. Diversity Enhancement Each model was
trained on different bootstrap samples of the
training data and with different random
initializations to ensure diversity in the
ensemble.

2.  Feature Subsampling Each model was trained
on a random subset of 80% of the features,
further increasing diversity.

3. Weighted Aggregation The final ensemble
predictions are formed through a weighted
average of individual model outputs, where
weights are determined based on each model's
performance on validation data.

We  implemented two  complementary
approaches for uncertainty quantification

1. Monte Carlo Dropout By keeping dropout
active during inference and performing
multiple forward passes (T=50) for each
prediction, we obtain a distribution of outputs that
captures model uncertainty. This technique
approximates Bayesian inference in deep
neural networks.

2.  Ensemble Disagreement We measure the
disagreement among ensemble members as
another indicator of wuncertainty. High
disagreement suggests areas where the models
have not converged to a consensus, indicating
potential uncertainty.

For each prediction, we compute the following
uncertainty metrics

e Predictive Entropy H(y|x) = -} p(y|x) log
p(y|x), which measures the overall
uncertainty.

e Mutual Information: I(y, 0|x) = H(y|x) -
E[H(y|x, 0)], which specifically captures
model uncertainty.

o Coefficient of Variation For the predicted

probability of each class.

¢ Ensemble Disagreement Score The average
pairwise Jensen-Shannon divergence between
predictions from different ensemble members.

3.3. Implementation Details

We utilised FPyTorch 2.0 and TensorFlow 2.9 for
our various architectures. The model is trained on
NVIDIA A100 GPUs with 80GB of memory, spread
across 8 GPU nodes via Horovod to enhance the training
process. To enhance computational performance, we
employed model parallelism alongside mixed precision
training (FP16) for extensive Transformer designs. This
was combined with NVIDIA DALI for expedited data
loading, TorchServe for efficient model deployment
and inference, ML for thorough experiment tracking
and model versioning, and Weights & Biases for
intricate visualisations and progress monitoring. Our
preprocessing pipeline utilised sophisticated feature
engineering, incorporating automated feature
selection, multi-step imputation via MICE (Multiple
Imputation by Chained Equations), synthetic data
generation for minority classes using SMOTE-NC,
and feature interaction identification through mutual
information and SHAP values [17-20]. We integrated
stratified 5-fold cross-validation for rigorous
assessment, progressive resizing for Transformer
models, uncertainty estimation for adaptive loss
weighting, and cyclical learning rates with warmup
and cosine annealing. To enhance model
generalisation and performance, we employed
Stochastic Weight Averaging (SWA),
hyperparameter optimisation via Bayesian methods
(utilising Optuna, with 150 trials per fold), and test-
time augmentation for uncertainty estimates.

3.4. Evaluation Metrics

We assessed our models utilising a comprehensive
array of criteria to verify performance and stability. We
evaluated overall performance by examining accuracy,
precision, recall, and Fl-score, providing a
comprehensive knowledge of the classification's
efficacy. To assess the model's capacity for class
discrimination, we incorporated the AUC-ROC metric
(AUC-ROC_VALUE for class discrimination efficacy)
[19, 25]. We conducted an exploratory confusion
research for detailed error analysis, which provided
insights into misclassification patterns.We evaluated
the calibration of expected probabilities through the
Expected Calibration Error (ECE) and employed the
Brier Score as an indicator of probabilistic
correctness, calculated as the mean squared error
between projected probability and actual events.
Alongside these conventional measurements, we
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developed specialised metrics to assess the validity
of uncertainty estimations [26-30]. The Metric U-
Error Correlation was utilised to assess the alignment
of uncertainty estimates with actual predicted
mistakes. Furthermore, we investigated selective
prediction about the Passed Prediction Accuracy
threshold and the Selective Prediction Threshold to
assess the model's predictive performance under
limited confidence. The Risk-Uncertainty Calibration
metric was employed to assess uncertainty levels,
confirming its suitability for high-risk forecasts and
facilitating  safer implementation in crucial
applications. The paired t-test (p<0.01) confirmed the
statistical significance of the enhancement in F1-score

and AUC-ROC relative to XGBoost.
4. RESULTS AND DISCUSSION
4.1. Model Performance Comparison

Table 1 juxtaposes the efficacy of our
sophisticated deep learning architectures against
previously existing models. Our collection of
sophisticated architectures attained significant
enhancements across all metrics, achieving a
collective accuracy of 92.7%, which reflects a 5.6
percentage point increase over the previous top
model (XGBoost at 87.1%).

Table 1: Performance Metrics across Different Models.

Model Accuracy Precision Recall F1-Score AUC-ROC
Random Forest 85.3% 84.7% 85.1% 84.9% 0.893
XGBoost 87.1% 86.9% 87.3% 87.1% 0.912
Standard Neural Network 86.2% 85.8% 86.4% 86.1% 0.901
ResNet-Based 91.2% 90.8% 91.3% 91.0% 0.947
DenseNet-Based 90.5% 90.1% 90.7% 90.4% 0.942
Transformer-Based 91.8% 91.5% 91.9% 91.7% 0.953
Advanced Ensemble 92.7% 92.3% 92.8% 92.5% 0.961

The Transformer-based design exhibited superior
individual performance, surpassing both ResNet and
DenseNet models. This demonstrates the efficacy of
the self-attention mechanism in capturing intricate
relationships among accident elements without
placing structural limitations on the data.

Each architecture showed distinctive strengths
e ResNet performed exceptionally well on
accidents with unusual combinations of
factors, likely due to its residual learning
capability

e DenseNet excelled at correctly classifying

accidents with gradual severity progression
e Transformer models showed superior
performance for accidents with complex
temporal patterns and contextual
dependencies
Our advanced ensemble exhibited exceptional
efficacy in accurately categorising severe and fatal
accidents, achieving an Fl1-score of 0.91 for the severe
category and 0.88 for the fatal category, in contrast to
XGBoost's scores of 0.81 and 0.77, respectively, as

Figure 2: Performance Comparison across Different Models.
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This notable enhancement in forecasting high- severity incidents is particularly beneficial for traffic
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safety initiatives and emergency resource category, highlighting the enhanced discriminative
distribution. capacity of our sophisticated deep learning ensemble
Figure 3 illustrates the ROC curves for each model across all severity classifications.

Figure 3: ROC Curves for Different Model Architectures.
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than prior research. We utilised integrated gradients,
SHAP (SHapley Additive exPlanations) values, and
Our sophisticated deep learning architectures attention weights from the Transformer model to
offer more refined insights into feature relevance obtain a thorough comprehension of feature
contributions, as illustrated in Figure 4.

4.2. Feature Importance Analysis

Figure 4: Feature Importance Analysis with Uncertainty Correlation and Attention Weights.
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Table 2: Top 10 Features Ranked by Innportance with Uncertainty and Attention Analysis.

Feature Importance Score Standard Deviation Uncertainty Correlation Attention Weight
Weather Conditions 0.87 0.021 0.74 0.148
Road Type 0.81 0.017 0.66 0.135
Driver Age 0.75 0.019 0.53 0.129
Time of Day 0.73 0.018 0.70 0.131
Vehicle Type 0.70 0.020 0.45 0.097
Light Conditions 0.68 0.018 0.72 0.124
Traffic Density 0.64 0.022 0.60 0.089
Road Surface 0.61 0.016 0.63 0.085
Driver Experience 0.59 0.021 0.51 0.093
Season 0.57 0.019 0.67 0.102

The '"Importance Score" column denotes a
weighted average of feature significance across all
architectures, with the Transformer model exerting
the greatest influence due to its exceptional
performance, as illustrated in Table 2. The "Attention
Weight" column in the novel offers direct
information from the Transformer architecture,
illustrating the average attention distributed to each
feature across all attention heads and levels.

The Transformer model significantly considers
temporal aspects (Time of Day, Season) and
environmental circumstances (Weather, Light
circumstances), reflecting intricate temporal connections
in accident patterns. The self-attention mechanism
effectively identified non-linear correlations between
these temporal elements and other aspects that
conventional models frequently overlooked.

The "Uncertainty Correlation" column denotes the
strength of each feature's correlation with prediction
uncertainty.  Factors characterised by high
importance, elevated attention weights, and
substantial uncertainty correlation (such as weather
and lighting conditions) indicate elements that
markedly affect accident severity, yet in intricate or
context-dependent manners that generate forecast
uncertainty.

The interactions, autonomously identified by the
Transformer design, correspond with domain
knowledge while also uncovering nuanced patterns
that may not be explicitly represented in conventional
methodologies.

4.3. Uncertainty Analysis across Conditions

Our uncertainty quantification indicates substantial
fluctuations in predictive confidence under varying
settings. The winter months exhibit greater severity
rates and increased forecast uncertainty (average
entropy: 1.32) in contrast to the summer months
(average entropy: 0.87). This indicates that winter
driving circumstances include intricate risk elements
that are more challenging to simulate consistently.

Nighttime accidents in rural regions demonstrate
significant uncertainty (average entropy: 1.64)
despite their high expected severity. This signifies a
necessity for enhanced data gathering and analysis in
these particular settings, as the model's predictions,
however alarming, are less dependable. Elevated
degrees of uncertainty in rural nocturnal conditions
correlate with established issues related to
inadequate lighting and a deficiency of traffic
Sensors.

Urban accidents during peak hours exhibit
moderate severity and low uncertainty (average
entropy: 0.53), indicating that the model has acquired
dependable patterns for these prevalent situations.

4.4. Temporal Distribution Analysis

Table 3 illustrates the time distribution of
incidents, incorporating both severity and uncertainty
measurements, so highlighting significant patterns in
predictive confidence across the day.

Table 3: Accident Frequency, Severity, and Uncertainty by Time of Day.

Time Period Frequency (%) Avg. Severity Peak Risk Hour Avg. Uncertainty
Morning Rush 28.3 21 7:00-8:00 0.74
Midday 221 1.9 12:00-13:00 0.68
Evening Rush 31.5 2.3 17:00-18:00 0.82
Night 18.1 2.7 23:00-00:00 147

Nocturnal incidents, albeit few, demonstrate the

greatest severity and the largest degree of predictive
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uncertainty. This indicates that nocturnal driving presents
risk variables with significant unpredictability, likely
attributable to sight challenges, exhaustion, or other
human elements that are more challenging to model
consistently.

The evening rush hour has both elevated frequency and
moderate intensity, accompanied by comparatively lower
uncertainty, signifying more predictable patterns under

congested conditions.

4.5. Geographic Risk and Uncertainty Analysis

Table 4 provides a holistic overview of accident
characteristics and prediction uncertainty across various
location types.

Table 4: Accident Characteristics and Prediction Uncertainty by Location Type.

Location Type Accident Rate* Avg. Severity High-Risk Factors Avg. Uncertainty
Urban Center 8.3 1.9 Pedestrian, Traffic Density 0.62
Suburban 57 22 Speed, Intersection 0.79
Rural 3.2 2.8 Road Condition, Light 1.35
Highway 41 2.5 Speed, Weather 0.97
*Accidents per 1000 vehicles per month

Urban locations exhibit the highest accident rate
(8.3 per 1000 vehicles), yet demonstrate the lowest
average severity (1.9) and minimal prediction
uncertainty (0.62), indicating the influence of
reduced speeds and more predictable behaviours in
congested regions.

Rural regions exhibit reduced accident rates (3.2)
yet demonstrate increased severity (2.8) and
markedly elevated forecast uncertainty (1.35). This
indicates a significant insight: the model exhibits
diminished confidence in its predictions specifically

in regions where accidents are often more severe,
underscoring a crucial area for enhanced data
gathering and modelling.

4.6. Combined Risk Factor Analysis with
Uncertainty

Table 5 extends previous risk factor combination
analysis by incorporating uncertainty metrics,
providing a more nuanced view of accident risk.

Table 5: Risk Multipliers and Uncertainty for Combined Factors.

Factor Combination Risk Multiplier Confidence Interval Uncertainty Score
Night + Rain + Rural 338 (35, 4.1) 1.72
Rush Hour + Urban + Rain 29 (2.7,3.1) 0.84
Weekend + Night + Young 32 (2.9,3.5) 1.39
Winter + Rural + Night 3.5 (3.2,3.8) 1.58

The most significant risk multiplier (3.8) is linked
to the conjunction of nocturnal conditions,
precipitation, and rural settings. This combination
has the greatest uncertainty score (1.72), signifying
that although our model forecasts a high risk for
these situations, there is substantial heterogeneity in
these projections. This indicates a necessity for
focused data gathering and analysis pertaining to
these particular conditions.

The combo of "Rush Hour + Urban + Rain"
exhibits a significant risk multiplier (2.9) alongside

considerably reduced uncertainty (0.84), suggesting
that the model has discerned more dependable
patterns for these prevalent scenarios.

4.7. Practical Applications with Uncertainty-
Aware Decision Making

Table 6 outlines practical applications of our
model, highlighting how uncertainty quantification
enhances decision-making.

Table 6: Practical Applications with Uncertainty Considerations.

Application Area Method Expected Impact | Challenge Level Uncertainty Role
Risk Prediction Real-time monitoring High Medium Threshold-based alerts
Resource Allocation | Uncertainty-weighted targeting Medium Low Prioritize high risk/low uncertainty
Policy Development Evidence-based planning High High Focus on reducing uncertainty
Driver Education Targeted programs Medium Medium Communicate confidence levels
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The uncertainty-aware methodology facilitates
more sophisticated decision-making. In resource
allocation, regions with both elevated expected risk
and little uncertainty should be prioritised, whereas
regions with high risk and significant ambiguity may
require both actions and supplementary data
gathering to mitigate uncertainty.

In policy creation, the uncertainty metrics
pinpoint areas requiring further investigation or data
acquisition prior to implementing significant policy
alterations. This mitigates overconfidence in model
predictions during intervention design.

Driver education programs can be customised to
highlight instances with high predictive confidence,
while recognising areas of uncertainty where drivers
must exercise heightened caution due to unknown
risk variables.

5. CONCLUSION AND FUTURE WORK

This study demonstrates the potential of
integrating advanced deep learning architectures,
particularly =~ Transformer-based models, with
uncertainty quantification to predict traffic accident
injury severity in Jordan. Our method not only
achieves superior predictive performance (92.7%
accuracy) compared to other techniques but also
offers significant insights into forecast confidence,
facilitating a more nuanced comprehension of traffic
concerns.

Models based on Transformers were particularly
well-suited for this dataset due to its self-attention
mechanism, which well captured structured feature
interactions such as road surface vs weather, lighting
conditions versus time of day, and driver age versus
vehicle type. ResNet and DenseNet were
complimentary models that enhanced the prediction
framework by addressing infrequent and more
severe incidents, respectively. An study of feature
contribution revealed that the primary predictors of

accident severity were weather conditions, road
intersection type, and driver age; subsequent model
updates elevated their relevance scores to 0.87, 0.81,
and 0.75, respectively.

This study's significant contribution is the
utilisation of uncertainty measurements, which
identify areas where the model exhibits poor
performance with elevated uncertainty, including
rural incidents occurring at night and under winter
conditions. These findings have significant consequences
for traffic safety legislation, infrastructure development,
and public education. Policymakers can promptly
address risk and uncertainty by prioritising high-
risk/high-certainty scenarios for urgent intervention and
high-risk/high-uncertainty situations for more data
collection and analysis. Future research has multiple
options for exploration. The study should be
expanded to include multi-year datasets to more
accurately reflect temporal dynamics and seasonality,
as the current model relies solely on 2018 data,
neglecting contemporary trends and real-time
occurrences such as live weather. The subsequent
phase involves integrating APIs from meteorological
and traffic agencies. Secondly, strategies to address
unreported or underreported collisions are intended
to mitigate data bias. Third, continued testing with
more sophisticated models, such as tabular
variations of the Vision Transformer (ViT), may yield
further performance enhancements. Enhancements
in dynamic traffic management can be achieved
through the development of real-time risk
assessment systems that incorporate uncertainty
estimations. To enhance driver behaviour, it is
essential to integrate uncertainty awareness into
educational initiatives. Additionally, targeted data
collection in high-risk and high-uncertainty contexts,
such as rural and night-time driving, along with
adaptive traffic seasonality policies, may collectively
augment the effectiveness of the aforementioned
measures and, consequently, road safety policies.
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