

DOI: 10.5281/zenodo.11032554

ARTIFICIAL INTELLIGENCE: SOCIAL IMAGINARIES OF POWER, KNOWLEDGE, AND ALGORITHMIC SURVEILLANCE, A VIEW FROM IBERO-AMERICA

Edgar Quispe-Mamani^{1*}, Germán Belizario-Quispe²; Fred Torres-Cruz³; Daisy Mestas-Yucra⁴; Savy Catterin Quispe-Curasi⁵

¹Universidad Nacional del Altiplano Puno, Escuela Profesional de Sociología, Puno, Perú. E-mail: edgarquispe@unap.edu.pe, ORCID: <https://orcid.org/0000-0003-4877-8551>

²Universidad Nacional del Altiplano Puno, Escuela Profesional de Ingeniería Agrícola, Puno, Perú. E-mail: gbelizario@unap.edu.pe, ORCID: <https://orcid.org/0000-0001-9805-3714>

³Universidad Nacional del Altiplano Puno, Escuela Profesional de Ingeniería Estadística e Informática, Puno, Perú. E-mail: ftriges@unap.edu.pe, ORCID: <https://orcid.org/0000-0003-0834-6834>

⁴Universidad Nacional del Altiplano Puno, Escuela Profesional de Trabajo Social, Puno, Perú. E-Mail: daisy.mestas@unap.edu.pe, ORCID: <https://orcid.org/0000-0002-0969-5529>

⁵Investigadora y Consultora Independiente, Puno, Perú. E-mail: savyquispec@gmail.com, ORCID: <https://orcid.org/0009-0002-2392-5367>

Received: 29/07/2025

Accepted: 03/08/2025

Corresponding Author: Edgar Quispe-Mamani
edgarquispe@unap.edu.pe

ABSTRACT

The article addresses the issue of artificial intelligence (AI) and its impact on social imaginaries of power, knowledge, and algorithmic surveillance in contemporary society. The objective of this study is to analyze the configuration of social imaginaries around artificial intelligence (AI), scientific knowledge generation, ethics, and algorithmic surveillance from the perspective of Ibero-American researchers. Methodologically, the study is based on a qualitative approach with an interpretive phenomenological design, applying documentary review techniques and semi-structured interviews with 20 experts from 11 Ibero-American countries: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Spain, Mexico, Peru, Uruguay, and Venezuela. The results indicate that, within the social imagination of the actors, AI is conceptualized as the culmination of modern instrumental rationality, thereby reinforcing existing power structures and promoting algorithmic surveillance. Moreover, its influence on research engenders tensions between optimization and the loss of critical thinking, thereby promoting the standardization of knowledge. The absence of clear regulations and the need for algorithmic control mechanisms are highlighted. In conclusion, a comprehensive ethical and regulatory framework is recommended to ensure the equitable and transparent use of AI in knowledge production, promoting integration with critical thinking and democratic values.

KEYWORDS: Knowledge, Ethics, Artificial Intelligence, Ai, Social Imaginaries, Research, Power, Algorithmic Surveillance.

1. INTRODUCTION

The advent of the information and network society during the 20th century (Castells, 2001) marked the onset of the fourth wave of the industrial revolution, which is characterized by the globalization of communications and network interactions. This process has had profound repercussions in different areas of society, including the economy of employment, the education system, and everyday interactions, among others. In this context, Beck (2002) posits that the networked society has engendered a global risk society, as evidenced by phenomena such as the proliferation of the informal economy due to labor flexibilization and deregulation, the escalating prevalence of unemployment, the predominance of multinational corporations over national economies, transnationalization in myriad dimensions, the erosion of state legitimacy, the crisis of political representation, and the escalating incidence of violence and organized crime.

Conversely, Bauman's perspective (2003) posits that the consolidation of the information and network society has precipitated a transition from a "solid" society, characterized by stable economic, political, cultural, and social relationships and physical proximity, to a "liquid" society, in which these relationships become more fragile, volatile, and mediated by digital technology, with a predominance of remote interaction.

In this context, the 21st century has been marked by the incorporation of information and communication technologies (ICT) into various dimensions of everyday life, generating significant transformations. The digitization and virtualization of numerous activities have been further accelerated by the ongoing pandemic. One of the most salient and contested issues in this process pertains to the increasing integration of artificial intelligence (AI) into society, which has given rise to a series of ethical and social inquiries necessitating meticulous examination. According to López (2021), artificial intelligence (AI) encompasses software and, in certain instances, hardware systems that are designed by humans to function in physical or digital environments. These systems are designed to collect, interpret, and process data to make optimal decisions and achieve specific objectives.

The phenomenon of AI poses fundamental challenges regarding its impact on humanity, with potential repercussions ranging from a reduction in job opportunities to a decline in empathy and compassion in human interactions. In the long term, this could contribute to the consolidation of social

imaginaries that represent a progressively dehumanized global society. In this sense, from the perspective of social imaginaries, the configuration of the social world is determined by a system of instituted meanings, which exist as effective expressions of the imaginary (Castoriadis, 2007). In this manner, AI systems would gradually influence the social imaginaries of a progressively dehumanized society.

In this context, the objective of this article is to analyze and comprehend the established and emerging social imaginaries concerning AI systems in the generation of scientific knowledge, ethics, and the necessity for algorithmic surveillance within the framework of a technologized society. This approach is informed by the perspectives of Ibero-American researchers and intellectuals.

2. THEORETICAL BASIS

2.1. *Artificial Intelligence and Social Imaginaries*

AI is a socio-technological phenomenon developed by humans with the aim of solving complex problems and improving their quality of life. However, its proliferation has precipitated substantial transformations across diverse domains, including social imaginaries, giving rise to both heightened expectations and apprehensions regarding its societal implications.

The genesis of AI can be traced back to 1936 with the conception of the Turing machine and was conceptually solidified in 1950 with the publication of Computing Machinery and Intelligence (Brito et al., 2019). However, its formal institutionalization occurred in 1956 with the conference The Dartmouth Summer Research Project on Artificial Intelligence, led by John McCarthy (Brito et al., 2019; Ortega-Esquembre, 2023; Otero, 2023). Since that time, the field of AI has evolved in two primary directions. The first is the mechanization of thought through specialized machines. The second is the development of intelligent agents based on algorithms.

Opinions on AI are divided between those who consider the fears about its impact to be exaggerated and those who warn of its risks to humanity. From a sociological standpoint, the potential implications of artificial intelligence (AI) for society are a subject of considerable interest. While AI has been shown to enhance quality of life, its extensive integration into society could lead to significant cultural transformations, subject humans to advanced forms of AI, and even pose a threat to the continuity of the species through the development of digital doubles and virtual assistants (Brito et al., 2019; Sandoval et

al., 2022).

This dichotomy aligns with the approach to apocalyptic and integrated thinkers espoused by Eco (1984): the former criticizes the impact of AI for its potential to homogenize culture and weaken critical thinking, while the latter see it as natural progress that democratizes access to knowledge and technology. However, Eco (1990) advances a more comprehensive examination that encompasses the risks and opportunities of AI in society.

From a functional standpoint, AI is delineated as software and hardware systems designed by humans to function in physical or digital environments, collecting and interpreting data to make optimal decisions to achieve specific objectives (Barrios-Tao & Diaz, 2024; Lopez, 2021; Ortega-Esquembre, 2023). From a forward-looking perspective, AI is regarded as a transformative force that is reshaping society, human interactions, and individual and collective identities. In this process, technology is not only created by humans, but also influences their construction, colonizing their privacy and emotions, and altering human subjectivity.

For their part, Berlinski *et al.* (2024) have identified three dimensions/categories of analysis from the perspective of social imaginaries regarding AI: institutional, organizational, and epistemic. From an institutional perspective, the development of AI is characterized by the interplay between free market principles and state regulation. However, this dynamic has resulted in the emergence of surveillance systems that have the potential to infringe upon privacy and individual liberties. Concurrently, the concentration of power in large technological powers and corporations has led to a limitation of citizen participation in the decision-making process regarding the evolution of these technologies. The rapid implementation of regulatory flexibility has occurred without a thorough analysis of its effects.

From an organizational perspective, AI is presented as a tool that improves productivity and transforms employment. Nevertheless, this transition has resulted in increased standardization and precariousness of employment, leading to a reduction in employee autonomy. Algorithms assume a pivotal role in decision-making processes, thereby diminishing the necessity for human intervention and fostering the adoption of automation in various professional settings. Conversely, from an epistemic perspective, generative AI is positioned as a potential wellspring of boundless knowledge access. Nevertheless, the application's dependence on machine learning

algorithms without the requisite rigorous theoretical validation engenders potential risks, as it has been observed to lead to the homogenization of responses, without ensuring the generation of verifiable knowledge. This phenomenon can result in the propagation of misinformation and the deterioration of critical thinking skills.

Furthermore, Berlinski *et al.* (2024) caution against the notion that artificial intelligence (AI) possesses omnipotent capabilities, capable of resolving any problem. This could potentially influence the collective perception of the irrelevance of human beings in various domains. This social imaginary would represent a risk by minimizing the role of human intervention in decision-making and knowledge generation.

According to the points, the phenomenon of AI is linked to a metapsychological crisis of Western civilization. This crisis attributes to AI the solution to all of humanity's problems (Farias, 2023) and to the idea of the trivialization of evil (Espinosa, 2022). The trivialization of evil is the idea that humanity, in search of immediate satisfaction, sacrifices its well-being and compromises its own survival.

2.2. Artificial Intelligence and Scientific Knowledge Generation

AI has transformed the generation of scientific knowledge by automating processes of information search, analysis, and synthesis (Abdelhafiz *et al.*, 2024). However, its integration into the research process poses ethical and methodological challenges that require a clear regulatory framework (Cárdenas, 2023; Pacheco-Romero *et al.*, 2023). In this regard, it is necessary to examine the role of AI in research and the dilemmas that arise around its use in scientific production.

Regarding AI as a tool for the production of scientific knowledge, authors such as López-Regalado *et al.* (2024) and Reyes & Mejía (2024) highlight that AI has optimized bibliometric analysis and data mining, allowing for more efficient systematic review. Thus, tools such as biblioshiny and bibliometrix facilitate the identification of scientific trends and the prediction of emerging areas. In addition, machine learning has been used for hypothesis simulation in social sciences (López-Regalado *et al.*, 2024). However, this technological advance has generated debates about the role of the researcher and the reliability of AI in scientific production. Izquierdo-Condoy *et al.* (2024) point out that AI should be understood as a complement to human work and not as a substitute for critical thinking or research experience. In this regard,

Berlinski et al. (2024) warn that the speed with which AI facilitates the publication of research could prioritize interests other than knowledge, compromising its quality.

On the other hand, AI has been incorporated into the writing and review of scientific articles. Models such as ChatGPT and Grammarly assist in grammatical correction and structural error detection, while platforms such as Elicit synthesize key findings from large volumes of literature (Cárdenas, 2023). However, their indiscriminate use poses risks to the originality and reliability of results, as AI can generate texts that are structurally correct but lack theoretical depth and critical analysis (Burgos et al., 2023).

Given these difficulties and risks, ethical and epistemological challenges arise in AI-based research. In other words, one of the main problems facing researchers is the lack of transparency of AI algorithms. Senthil et al. (2024) argue that AI models function as "black boxes," making it difficult to replicate results. This problem is exacerbated in disciplines where data interpretation is critical, such as the social and medical sciences. This problematic situation generated by AI systems in research gives rise to algorithmic surveillance.

Algorithmic bias has also been identified as a threat to equity in knowledge generation. Cedeño et al. (2024) warn that AI systems/models can perpetuate pre-existing inequalities if the training data is biased. An example of this is health research, where AI tends to favor populations that are overrepresented in data sets (Senthil et al., 2024).

In addition, the proliferation of articles generated, in whole or in part, by AI has raised questions about ethics in scientific publishing. Pacheco-Romero et al. (2023) document cases where AI has generated articles with fictitious references or invented data, posing a challenge for scientific journals in terms of content verification.

This implies an ethical approach to regulation and strategies for the responsible use of AI systems. Given the complexity of these challenges, various authors have proposed strategies to ensure the ethical use of AI in the research process. Ernst & Young (2024) emphasize the importance of clear regulations that define the role of AI in knowledge production. Some scientific journals have begun to require explicit disclosure of the use of AI in the writing of articles and have prohibited models/systems from being recognized as authors because they lack responsibility for the content generated (Abdelhafiz et al., 2024; Cárdenas, 2023).

In terms of training, Cedeño et al., 2024 and

Izquierdo-Condoy et al. (2024) suggest that universities include AI training in their academic programs so that researchers can use these tools critically. They also propose periodic audits of research projects that use AI to ensure compliance with ethical and methodological principles.

Another important measure is the improvement of systems for detecting AI-generated texts. Tools such as Originality.ai, Copyleaks, and Turnitin have been implemented to identify the authorship of documents, although they still have limitations (Pacheco-Romero et al., 2023).

Therefore, AI has revolutionized the way scientific knowledge is generated and validated, but its use poses significant challenges in terms of ethics, transparency, and fairness. While AI is a powerful tool for optimizing research, its implementation must be regulated and monitored to avoid bias and ensure academic and research integrity. The scientific community must lead the formulation of regulations that promote the responsible use of AI systems, without compromising the quality and originality of the knowledge produced (Cedeño et al., 2024; López-Regalado et al., 2024).

2.3. Algorithmic Power and Surveillance

Recent research explores the intersection of AI, power, and algorithmic surveillance. The advancement of AI has transformed the way power and surveillance are exercised and distributed in contemporary society. AI and algorithms not only process information but also structure social and political relationships through mechanisms of control, prediction, and segmentation (Evangelista, 2023). In this sense, from philosophical, legal, and sociopolitical perspectives, four theoretical positions are adopted for the purposes of this study, which are outlined below.

From the Foucauldian theory of digital panopticism and algorithmic governmentality, (Domínguez & Domínguez, 2023) argue that algorithmic surveillance has evolved from a disciplinary model based on constant observation to a form of digital governmentality. Here, algorithms not only monitor behavior but also shape individuals' future actions through predictive systems and automated feedback. This model aligns with the notion of biopolitics, where control is no longer exercised explicitly but through technological mechanisms that condition access to goods, services, and opportunities. In line with the above, Evangelista (2023) proposes the idea of "instrumental power" in surveillance capitalism, in which algorithmic systems do not seek to modify individuals'

subjectivity, but rather to influence their behavior without their explicit knowledge. This represents an ethical and political challenge, as decision-making is delegated to systems that operate under market logic and state control, without clear accountability mechanisms. On the other hand, from the perspective of algorithmic surveillance theory and the privacy crisis, it is argued that AI systems and algorithmic governance have created a crisis in citizens' privacy and autonomy. In this regard, Campione (2021) describes how mass data collection has transformed privacy into an obsolete concept, where corporations and governments can track and analyze personal information in real time without the informed consent of users. This is evident in the implementation of biometric monitoring and social rating systems, which can determine citizens' access to certain rights and benefits (Petrov *et al.*, 2024). For his part, Morales (2021) argues that the current regulatory framework is insufficient to address the challenges posed by artificial intelligence in terms of data protection. Although regulations such as the General Data Protection Regulation (GDPR) exist in Europe, in practice consent to the use of data has become a formality with no real value, as users rarely have meaningful options to refuse the collection of their information.

From the perspective of predictive theory and algorithmic bias, there is a risk of algorithmic discrimination, as AI models are often trained with historical data that reflects pre-existing structural inequalities. In this regard, Campione (2021) cites cases such as the COMPAS crime prediction system in the United States, which has demonstrated racial bias by classifying certain social groups as "high risk" without adequate oversight mechanisms.

Similarly, Tenorio (2021) points out that algorithms can reinforce inequalities in access to credit and employment by basing their assessments on data patterns that discriminate against vulnerable sectors. Similarly, Van Brakel (2021) warns that oversight of surveillance algorithms is limited, as traditional regulatory models focus on protecting individual data but not on the socio-technical effects of algorithmic surveillance, such as the stigmatization of communities and digital exclusion. This underscores the need to develop audit and transparency mechanisms in AI systems to prevent them from perpetuating structural inequalities. Furthermore, drawing on theories of digital colonialism and asymmetrical power, Evangelista (2023) argues that the Global North's dominance over digital infrastructure and big data has created a new form of technological dependency in the Global

South, where platforms and technologies are designed without considering the cultural and economic particularities of these regions. This phenomenon reinforces historical relationships of exploitation and exclusion, consolidating an ecosystem in which data becomes the new resource extracted to benefit global technology corporations.

Juri (2023) adds to this by arguing that digital sovereignty has become a central issue in global governance. The ability of states to regulate the collection and use of data within their territory is limited by the transnational nature of technology companies, which imposes the need for international regulatory frameworks that balance innovation with the protection of digital rights. Therefore, algorithmic power and surveillance represent one of the greatest contemporary challenges in terms of privacy, equity, and social control. The literature reviewed demonstrates that AI has transformed the dynamics of power, shifting control from traditional institutions to automated systems that operate with limited transparency and social consequences that are not yet fully understood. To mitigate these risks, a multidisciplinary approach combining legal regulation with socio-technical oversight and citizen participation is needed.

Algorithmic surveillance should not be seen solely as a technological issue, but as a political problem that requires critical analysis from the social sciences. In this sense, AI governance must be guided by principles of social justice, transparency, and informational self-determination to ensure that technology is a tool for equity and not a mechanism for exclusion and domination.

3. MATERIALS AND METHODS

The research is based on a qualitative methodological approach (Hernández-Sampieri & Mendoza, 2018), as it seeks to understand the perceptions and experiences of participants in relation to the phenomena surrounding them. Specifically, it examines their experiences, interpretations, meanings, and conceptions of AI systems in relation to the research process, ethics, and algorithmic surveillance (Salgado, 2007). To this end, a methodological design based on interpretive phenomenology has been adopted, aimed at exploring and interpreting subjectivities and intersubjectivities expressed in the social imaginaries of the actors involved (Quispe-Mamani *et al.*, 2022; Sandoval, 2002).

3.1. Participants and Research Techniques

The study is based on a population of 20

researchers and experts from various disciplines within the social sciences and humanities, who come from 11 Ibero-American countries: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Spain, Mexico, Peru, Uruguay, and Venezuela. All of them are part of the Ibero-American Network of Imaginaries and Representations (RIIR). Participants were selected through intentional and theoretical sampling, prioritizing key informants with relevant knowledge on the subject of the study and who were available to participate in the research (Quispe-Mamani et al., 2023).

Due to the qualitative nature of the study, a small but representative sample was chosen from a sociocultural perspective (Duque & Aristizábal, 2019).

Two main techniques were used to collect information: document review and interviews. Initially, various documentary sources were reviewed, including written texts, audiovisual material, and photographic records, from the project design phase to the preparation of the final article (Valles, 1999). A bibliographic record form was used as a data collection tool, systematizing the information based on the content analysis technique (Quispe-Mamani & Ayamamani-Collanqui, 2023). Subsequently, semi-structured and in-depth interviews were conducted, which allowed for the collection of data on the social imaginaries of the participants in relation to AI systems in research, ethics, and algorithmic surveillance (Lopezosa, 2020).

3.2. Data Analysis Procedure

Data analysis was carried out in five phases. In the first phase, after selecting and contacting key informants, an interview guide was applied, recording conversations via Zoom videoconferencing, with the prior informed consent of the participants. Subsequently, the interviews were manually transcribed into Word documents and edited to assess the quality of the information collected. Data collection took place between June and August 2024.

In the second phase, based on qualitative content analysis (Duque & Aristizábal, 2019), 10 interviews selected for their density and quality of information were analyzed in depth. Using Atlas.ti software, patterns of behavior and emerging subcategories were identified, which served as the basis for coding the rest of the interviews (Barquín et al., 2022; Quispe-Mamani et al., 2023).

In the third phase, based on Atlas.ti v.24 software, the interviews were coded, extracting a total of 644 quotes, which were classified into three categories:

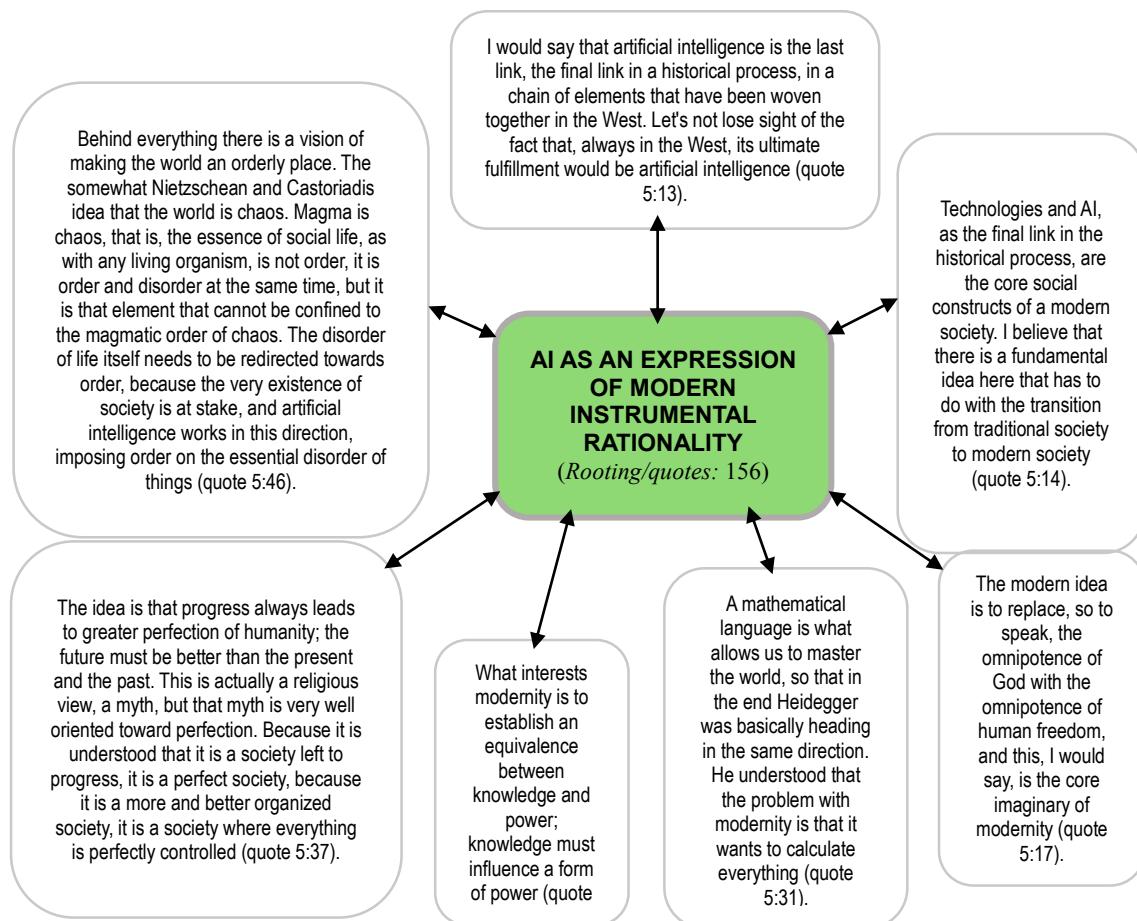
one central and two main, all related to the social imaginaries of the actors on artificial intelligence in relation to research, ethics, and algorithmic surveillance. In addition, emerging subcategories of analysis were identified, which constitute the research contributions.

During the fourth phase, the density of interventions and testimonies was evaluated by subcategory in order to select the most representative quotes. In the fifth phase, the data was analyzed and interpreted using two qualitative data analysis techniques: qualitative content analysis and discourse analysis.

Finally, to ensure the rigor of the study, a triple methodological triangulation was applied: first, a relationship was established between phenomenology and the use of Atlas.ti (Klüber, 2014); second, the results obtained through two different data collection techniques (document review and interviews) were compared; and third, triangulation was carried out between the five researchers of the interdisciplinary team, who analyzed the data in a complementary manner (Forni & De Grande, 2020; Llanos-Contreras et al., 2021).

4. RESULTS AND DISCUSSION

Given the nature of the methodological approach of qualitative research, this section presents the results and discussion of the findings simultaneously, with the aim of providing a clear account of the research findings. In this sense, these findings are presented, analyzed, and interpreted around three categories of analysis: one central category, referring to AI systems as the core social imaginary of modern Western rationality; and two main categories, referring to the implications of AI in knowledge generation, and algorithmic ethics and surveillance.


Around each of these three categories of analysis, a diversity of social imaginaries emerged, expressed in the form of subcategories of analysis, which are presented below.

4.1. AI as the Score Social Construct of Modern Western Rationality

Figure 1 presents the core social imagery of modern Western society in relation to AI, highlighting it as an expression of modern instrumental rationality (E=156). This interpretation is consistent with the theory of the evolution of ICT in modern society, which emphasizes that AI systems are not only an expression of technological development, but also a sociocultural and political phenomenon that reflects the aspirations, fears,

myths, and power relations of modernity (Berlinski

et al., 2024; Sandoval et al., 2022).

Figure 1: The core Social Imagination of Modern Western Society.

Source: Own elaboration based on Atlas.ti v24.

A primary conclusion presented in Figure 1 is the conceptualization of AI as the "final link in the historical process" of instrumental rationality. This notion finds substantiation in Habermas' sociological theory (1999), which posits that modernity has been characterized by the preeminence of technical-scientific rationality over alternative forms of knowledge and social organization. From this perspective, artificial intelligence (AI) is regarded as the zenith of a contemporary endeavor that aims to calculate, control, and organize reality through algorithmic processes (Heidegger, cited in Figure 1, citation 5:31).

Figure 1 underscores the modern conception of progress, asserting that it invariably leads to the enhancement of humanity (citation 5:37). This optimistic imaginary aligns with the position of "integrated" groups in modern society (Eco, 1984), who believe that technology democratizes access to knowledge and improves social organization.

Nevertheless, this perspective has been the subject of critique from the perspectives of sociology and philosophy. Consequently, scholars such as Farias (2023) have cautioned that the notion of AI as a universal remedy for human challenges signifies a metapsychological crisis within Western civilization, wherein responsibility for decision-making and shaping the future of society is entrusted to technology.

An additional salient finding highlighted in Figure 1 is the correlation between knowledge and power in modernity (citation 5:32). In this regard, it has been posited that AI serves to reinforce asymmetrical power structures by centralizing control of knowledge in the hands of large corporations and states. This centralization of knowledge has the effect of promoting algorithmic surveillance that limits individual autonomy (Domínguez & Domínguez, 2023; Evangelista, 2023). In addition, Foucault's theory of digital panopticism

enables the comprehension of how AI has evolved into a mechanism of governmentality, wherein technological knowledge is translated into forms of domination and prediction of human behavior (Foucault, 1976).

Moreover, Figure 1 demonstrates that AI endeavors to impose order on the disorder inherent in social life (citation 5:46). This approach is associated with Castoriadis's (2007) theory of the tension between order and chaos in the constitution of social imaginaries. In essence, social imaginaries are shaped in the context of chaos, while AI systems come to shape order in the face of that disorder. In this sense, AI is presented as a tool for stabilizing uncertainty, but also as a device that can reduce

interpretive diversity and critical thinking, reinforcing a hegemonic model of rationality (Burgos et al., 2023).

In short, the findings presented in Figure 1 show that AI is understood as the ultimate expression of modern Western instrumental rationality, a phenomenon that reconfigures the relationships between knowledge and power and projects a vision of progress associated with both opportunities and risks. Consequently, there is a necessity for critical analysis and regulations to ensure the equitable and ethical use of AI in contemporary society.

4.2. Implications of AI in Knowledge Generation

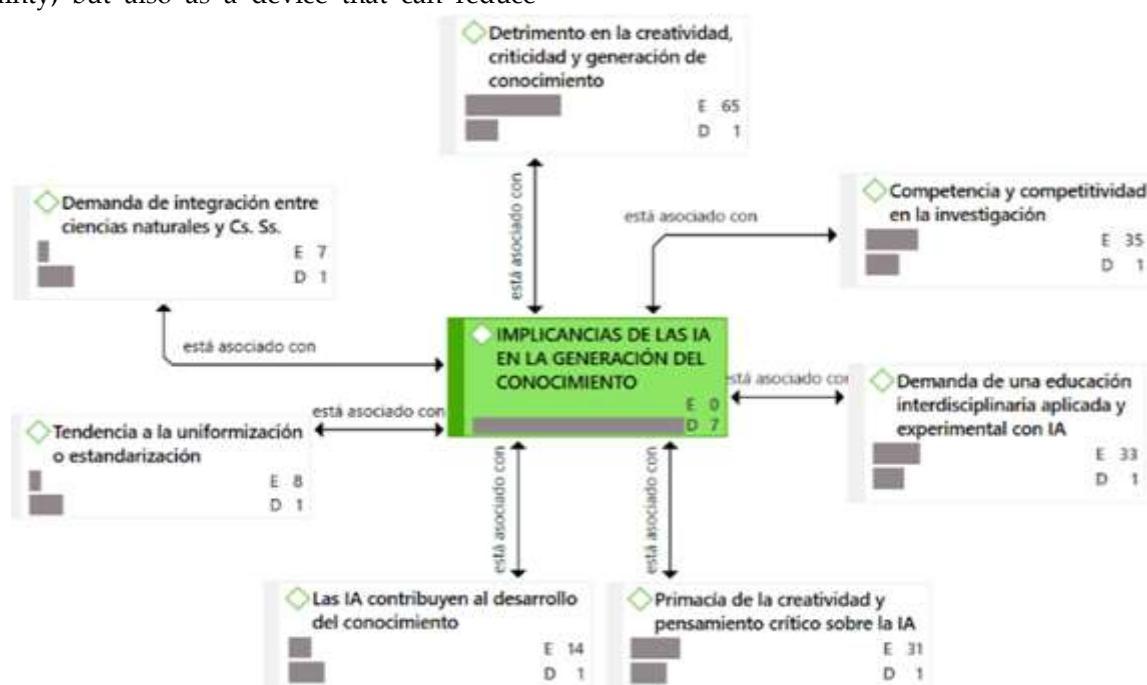


Figure 2: Implications of AI in Knowledge Generation.

Source: Own elaboration based on Atlas.ti v24.

Figure 2 presents the results regarding the implications of AI on knowledge generation, breaking down its effects into various dimensions or subcategories of analysis that emerged during empirical field research. Each subcategory is then analyzed in relation to the main category of analysis.

On the one hand, from the perspective of the actors, the social imaginary of detriment to creativity, critical thinking, and knowledge generation (E=65) is shaped by the incorporation of AI into research. In other words, the widespread use of AI in research can negatively impact the creativity and critical thinking of researchers. According to Izquierdo-Condoy et al. (2024), the automation of information search and synthesis can limit interpretative diversity and promote the homogenization of knowledge. Likewise, Burgos et al. (2023) warn that dependence

on algorithms can generate research lacking in theoretical depth, weakening the analytical, reflective, and critical capacity of researchers. Of the findings, according to the actors, this is the one with the greatest impact of AI systems on research and, therefore, on knowledge generation, which requires urgent attention in academia and other areas of research and scientific knowledge generation.

Indeed, I believe that AI is replacing human capacity, creativity, and critical thinking to some extent because, I insist, it is making us a little weaker, a little lazier, and more obsolete (16:6).

In the context of the previous social imaginary, AI systems have generated greater competition and competitiveness in research (E=35). In other words, AI has intensified competition in knowledge production, accelerating publication times and

putting pressure on researchers. Berlinski et al. (2024) point out that the speed with which studies are generated can compromise scientific quality, prioritizing quantity over academic and scientific rigor. In this sense, Reyes & Mejía (2024) highlight that AI allows for the optimization of data mining and bibliometric review, which increases research productivity but can also exacerbate job insecurity in academia.

Yes, for example, my employment contract now states that we go to a production, and I work at a private university. So you have to produce a certain number of papers per year, and if you don't, your contract isn't renewed. So, people, faced with that, are willing to pay whatever it takes (6:45).

Given the perception of competition and competitiveness in research, there is a demand for applied and experimental interdisciplinary education with AI (E=33). This social perception in the context of AI systems requires a transformation in higher education, promoting interdisciplinary approaches that integrate exact sciences and social sciences.

Truly, interdisciplinary work is needed, where four true friends can come together. The technological dimension of each university, with the humanistic and social dimensions of each university, interdisciplinary teams, humanists and social scientists who begin to dialogue, who lay down their weapons, so to speak, and sit down with the technologists, and the technologists who lay down their prejudices and sit down with the humanists (10:58).

In this regard, Cedeño et al. (2024) highlight the need to incorporate AI training into university curricula to prepare researchers for the critical and ethical use of these tools. Similarly, Berlinski et al. (2024) suggest that experimental training with AI can improve understanding of its potential and limitations in academic and scientific research.

It is increasingly necessary to experiment. I believe that the transformation of education is a transformation that points toward experimentation (10:41).

However, despite the fact that the actors strongly believe that AI systems will predominate in knowledge generation, creativity and critical thinking are and must remain paramount over AI (E=31). In other words, while AI optimizes research processes, it does not and should not replace critical thinking and human creativity.

I don't know if artificial intelligence will have the capabilities to perform a thorough analysis in five or ten years' time. I don't know how this will evolve, but

everything points to it happening. However, in the field of social sciences and humanities, I can tell you right now, and I'm going to stick my neck out here, that I believe artificial intelligence will never be able to replace subjectivity, feelings, and collective and individual thinking in human beings. It will always try to emulate and simulate, but it will never completely replace it (12:39).

As Izquierdo-Condoy et al. (2024) argue, AI should be seen as a complementary tool that facilitates data analysis but does not replace theoretical interpretation and the formulation of research questions. Farias (2023) argues that the use of AI in academia must be accompanied by a strengthening of researchers' analytical and critical skills to avoid the automation of thought and critical reflection.

On the other hand, to the extent that AI has revolutionized knowledge production by automating the collection and analysis of large volumes of data, it contributes to the development of knowledge (E=14). In this regard, Abdelhafiz et al. (2024) highlights that AI facilitates the identification of patterns in complex databases, allowing for a broader exploration of social and scientific phenomena.

There are undoubtedly dozens or hundreds of possibilities for expanding knowledge, and probably thousands. If we know how to use it, it can be a very useful tool for refining results, refining reflections, expanding theoretical frameworks and conceptual frameworks, thinking about the elements we are researching from other perspectives, or reversing (9:29).

However, Berlinski et al. (2024) warn that unlimited access to AI-generated information must be accompanied by rigorous validation processes to prevent the spread of errors and algorithmic biases. Furthermore, the predominant use of AI systems tends to lead to the standardization of information and knowledge (E=8). In other words, the widespread use of AI in research can lead to a standardization of knowledge, reducing interpretive and methodological diversity. As Campione (2021) argues, algorithms tend to prioritize certain patterns and sources of information, which can lead to biases in academic output.

Of course, it has to do with a society that is much more subject to mechanical rationalization, to greater standardization, even in the organization of different forms of life experience, in a uniformity of experience (...), experience is overshadowed by calculation, when calculation supplants experience (5:53).

Given this landscape of bias and uncertainty in

knowledge generation, Senthil et al. (2024) warn of the need to design AI systems that promote epistemological diversity and allow new lines of research to emerge.

The emergence of new lines of research will be possible to the extent that there is integration between the natural sciences and the social sciences (E=7). In other words, the impact of AI on research requires an interdisciplinary approach that integrates natural sciences and social sciences. In this vein, Evangelista (2023) points out that AI cannot be understood exclusively from a technical perspective but must be analyzed in relation to its social and political implications. Similarly, Juri (2023) argues that the regulation of AI in research must consider scientific, ethical, and epistemological aspects, promoting convergence between different disciplines to address its challenges.

In summary, the findings presented reflect that AI has revolutionized knowledge generation, but also poses significant challenges in terms of regulation, equity, and transparency. Given this situation, a multidisciplinary approach combining ethical regulations with periodic audits on the use of AI in research is suggested (Cedeño et al., 2024). Throughout this process, the scientific community must lead the formulation of regulations that promote the responsible use of AI, ensuring its integrity and reliability in the production of knowledge.

Figure 3: Ethics and the Demand for Algorithmic Oversight.
Source: Own elaboration based on Atlas.ti v24.

Consistent with the above, in addition to ethics in AI design, the social imagination of stakeholders

4.3. Ethics and the Demand for Algorithmic Oversight

Figure 3 presents the findings regarding the ethical implications and demand for algorithmic oversight in the development and use of AI systems. Next, each of the seven subcategories of emerging or social imaginaries of the actors in relation to ethics and algorithmic oversight is analyzed.

On the one hand, the ethical dimension for AI design (E=72) emerges in the actors' imaginary as a mechanism for control and algorithmic surveillance in the design of AI systems, that is, the introduction of algorithms that monitor the algorithms themselves in the process of research and knowledge generation. The design of such AI algorithms must be governed by ethical principles that ensure their responsible use.

The first thing that must be done is to establish an ethical framework for the design and use of AI, followed by a national public policy on artificial intelligence, which should then be legislated, leading to the creation of laws, decrees, etc. (6:29).

Regarding this procedure, Ernst & Young (2024) emphasize the need to establish regulations that prevent algorithmic manipulation and bias in automated decision-making. Similarly, Cedeño et al. (2024) suggest the implementation of codes of conduct for AI developers, promoting transparency and fairness in technological processes.

includes a demand for regulation of AI design and use (E=55). In other words, the lack of regulation in

the development and application of AI has raised concerns about privacy and social control. For this reason, Morales (2021) argues that the current regulatory framework is insufficient to protect citizens' digital rights. In this regard, Juri (2023) highlights the need for international regulations that balance innovation with the protection of human rights.

For me, they always have to be regulated. There has to be regulation. I repeat, it cannot be that a group of people in Silicon Valley decide how technologies are going to impact our daily lives, our countries, our society (12:31).

The design and libertine use of AI systems infringes on citizens' freedom and privacy in everyday life, and therefore this dynamic of AI directly and indirectly impacts the process of research and knowledge generation. Therefore, its design and use require an ethical and regulatory framework: algorithms that monitor algorithms.

In response to the demand for algorithmic surveillance, Figure 3 reveals a finding of paramount importance, in the sense that AI is a symbolic social construct (E=52) and, as such, the design of AI algorithms depends on the interest and political will of its promoters for its production, reproduction, and democratic and beneficial expansion for the human species itself. However, from a sociological perspective, Berlinski et al. (2024) argue that AI is not a neutral entity, but a social construct influenced by collective imaginaries and power structures. Furthermore, Farias (2023) highlights how AI has become a symbol of progress, even though its development responds to economic and political interests that may perpetuate structural inequalities.

As surveillance algorithms are incorporated into AI systems, the demand for inclusive and contextualized AI (E=32) emerges in the imagination of actors, in line with the perceived needs and strategic interests of different social sectors at the global level. In this sense, the development of AI systems must consider the cultural diversity and socioeconomic particularities of different regions of the world. In this regard, Evangelista (2023) warns that the hegemony of the Global North in digital infrastructure reinforces technological dependency relationships in the Global South. For this reason, Berlinski et al. (2024) propose the creation of AI systems that integrate local perspectives and community knowledge.

I believe that this must be done in a simpler, easier way, trying first to bring people closer by using language that is accessible to all citizens, and using powerful language for all citizens. The other thing is

how to generate this link and be able to work on the regulation that I propose, between the state, business, and citizens. Well, local mayors can form councils, there can be discussions in neighborhood associations, etc. (12:76).

Consistent with the above, if the drivers of AI systems decide to incorporate algorithms that monitor the algorithms themselves, then it will be possible to reverse the challenges of AI, i.e., its opposition and rejection (E=23), in different social sectors, mostly discriminated and excluded, at the global level. Thus, despite its benefits, AI faces resistance due to its potential risks.

There is this very sinister vision of a persecutory state apparatus, as if there were a small camera inside this computer sending everything, we say to a government surveillance agency, whether Peruvian or Uruguayan. That is also the idea that comes with the future, for an authoritarian regime, a dictatorial regime, this technology can be terrible (15:36).

Regarding the risks and threats of AI systems, Sandoval et al. (2022) identify a dichotomy between those who see AI as a tool for progress and those who consider it a threat to human autonomy. And, from the theory of algorithmic surveillance, (Domínguez & Domínguez, 2023) argue that resistance to AI is due, in part, to the opacity of algorithms and their impact on privacy and individual rights. On the other hand, although the use of AI systems has revolutionized various areas of everyday life, including the process of scientific knowledge generation, the construction of technologized social relationships has been and continues to be inevitable in this context (E=22). According to this social imaginary, AI has changed social dynamics, influencing the way people interact and make decisions. As Campione (2021) argues, AI redefines privacy and autonomy by collecting and analyzing large volumes of personal data. This position is consistent with Evangelista's (2023) approach to instrumental power, where technologies not only process information but also structure social relations through digital/algorithmic control mechanisms: dehumanization.

I believe that we are experiencing a moment of dehumanization in this sense, because for me, human relationships, face-to-face contact, this direct connection to be able to sell to the person in front of me, is shifting, and we are becoming increasingly accustomed to having these relationships mediated by a technological device, a platform, or a social network (12:50).

Finally, given the rapid advancement of AI systems in different areas of global society, a radical

social imaginary is emerging among actors (Castoriadis, 2007), according to which it is of paramount importance to place "human dignity based on endogenous principles and values" (E=19) at the center of the global debate. This means that the development of AI systems must focus on preserving human dignity and respect for fundamental human values.

I reiterate that hope or alternative lies in reviving community networks and reconnecting with the people in our circle, so that we can compare points of view and obtain information that contrasts with the hegemonic discourse that is also conveyed through this same technology (8:10).

For this reason, Petrov et al. (2024) warn that the implementation of algorithmic surveillance systems can compromise individual autonomy if clear ethical limits are not established. Furthermore, Juri (2023) emphasizes the importance of designing regulatory frameworks that protect people's digital or algorithmic identity and sovereignty.

In summary, the findings presented in this third category of analysis show that AI systems pose ethical and social challenges that require an interdisciplinary approach. Therefore, theoretical positions highlight the need for clear regulations, transparency in algorithm design, and effective oversight to prevent bias and ensure respect for human rights (Cedeño et al., 2024). The challenge for the scientific community is to lead the formulation of policies that balance technological advancement with social justice and digital equity.

5. CONCLUSIONS

On the one hand, AI has been conceptualized as the zenith of Western modernity's instrumental rationality, marked by the pursuit of control, order, and efficiency within society. This paradigm, influenced by the idea that knowledge equals power, reinforces power structures by centralizing access to and management of knowledge in the hands of large corporations and states. This dynamic of AI not only reproduces relations of domination but also promotes algorithmic surveillance that limits individual autonomy, epistemological diversity, and critical thinking in research and knowledge generation.

Conversely, the integration of AI into research has given rise to a dichotomy between the pursuit of process optimization and the concomitant decline of

human critical thinking and creativity. While artificial intelligence (AI) facilitates enhanced efficiency in the collection and analysis of voluminous data sets, its excessive implementation can result in a standardization of knowledge, thereby diminishing interpretive diversity and theoretical and analytical depth. However, when utilized as a complementary tool, AI has the capacity to generate and expand new lines of research and to promote the analytical capacity of researchers without replacing their role in formulating research questions and interpreting findings.

Moreover, the dearth of explicit guidelines concerning the design and utilization of AI has given rise to apprehensions regarding its ramifications on equity, privacy, and the caliber of the knowledge engendered. In essence, the opacity of algorithms and the concentration of power in their development have given rise to algorithmic surveillance and manipulation that can violate fundamental rights. It is therefore imperative to establish regulatory and algorithmic audit mechanisms that guarantee transparency, equity, and social inclusion in the use of AI in research and knowledge production, in academia, and in other areas.

In light of the findings and the research results, it is recommended that an ethical, regulatory, and interdisciplinary framework be formulated for the design and use of AI in research and knowledge generation. This framework should include the following elements: The establishment of clear regulations and the implementation of algorithmic supervision and auditing are imperative to ensure transparency and fairness in knowledge production. The incorporation of AI as a complementary tool is essential, without replacing the creativity and critical thinking of researchers. The promotion of inclusive and contextualized AI, based on epistemological diversity and the needs of different communities and disciplines, is necessary to avoid the homogenization of knowledge. Furthermore, the promotion of interdisciplinary dialogue, integrating perspectives from the natural and social sciences, is crucial to ensure technological development aligned with ethical and democratic values, responding to social needs and not just business interests. It is further recommended that additional studies be conducted on the subject and issues investigated, employing complementary paradigms, with the objective of generating critical mass and institutionalizing the findings.

Acknowledgments: We would like to thank the researchers from the Ibero-American Network of Imaginaries and Representations, who have participated as key informants in this study.

REFERENCES

Abdelhafiz, A. S., Ali, A., Maaly, A. M., Ziady, H. H., Sultan, E. A., & Mahgoub, M. A. (2024). Knowledge, perceptions and attitude of researchers Towards Using ChatGPT in Research. *Journal of Medical Systems*, 48(26), 1-11. <https://doi.org/10.1007/s10916-024-02044-4>

Barquín, A., Arratibel, N., Quintas, M., & Alzola, N. (2022). Percepción de las familias sobre la diversidad socioeconómica y de origen en su centro escolar. Un estudio cualitativo. *Revista de Investigación Educativa*, 40(1), 89-105. <https://doi.org/10.6018/rie.428521>

Barrios-Tao, H., & Díaz Pérez, V. (2024). Inteligencia artificial y emociones: Psicopolítica mediante datos y algoritmos (2015-2022). *Revista de Ciencias Sociales*, XXX(1), 251-267. <https://doi.org/10.31876/rcc.v30i1.41654>

Bauman, Z. (2003). *Modernidad líquida* (Primera ed). Fondo de Cultura Económica. Argentina: Buenos Aires.

Beck, U. (2002). *La sociedad del riesgo global* (Edición es). Siglo XXI. España: Madrid.

Berlinski, E., Morales, J., & Sponem, S. (2024). Artificial imaginaries: Generative AIs as an advanced form of capitalism. *Critical Perspectives on Accounting*, 99(February), 1-9. <https://doi.org/10.1016/j.cpa.2024.102723>

Brito, P., Villavicencio, C., & Sánchez, P. (2019). Reflexiones sobre posibles conflictos entre la inteligencia artificial y el futuro de la sociedad. *Revista de La Universidad Del Zulia Ciencias Sociales y Arte.*, 10(28), 260-280.

Burgos, L. M., Suárez, L. L., & Benzadón, M. (2023). Inteligencia artificial ChatGPT y su utilidad en la investigación: el futuro ya está aquí. *Medicina*, 83, 499-501.

Campione, R. (2021). Recopilar y vigilar: algunas consideraciones filosófico-jurídicas sobre inteligencia artificial. In *Sociología y tecnociencia* (Vol. 11, Issue Extra 2, pp. 123-139). https://doi.org/10.24197/st.Extra_2.2021.123-139

Cárdenas, J. (2023). Artificial intelligence, research and peer-review: Future scenarios and action strategies. *Revista Espanola de Sociologia*, 32(4), 1-15. <https://doi.org/10.22325/fes/res.2023.184>

Castells, M. (2001). Materiales para una teoría preliminar sobre la sociedad de redes. *Revista de Educación*, Número extraordinario, 41-58.

Castoriadis, C. (2007). La institución imaginaria de la sociedad. In *Tusquets Editores* (1º Ed. Arg). Argentina: Buenos Aires.

Cedeño, J. G., Maitta, I. S., Vélez, M. L., & Palomeque, J. Y. (2024). University research with artificial intelligence. *Revista Venezolana de Gerencia*, 29(106), 817-830. <https://doi.org/10.52080/rvgluz.29.106.23>

Domínguez, D. J., & Domínguez, M. (2023). Panoptismo digital y gubernamentalidad algorítmica. Una mirada desde la Teoría social. *Las Torres de Lucca. International Journal of Political Philosophy*, 12(2), 261-277. <https://doi.org/10.5209/ltdl.83864>

Duque, H., & Aristizábal, E. T. (2019). Análisis fenomenológico interpretativo. Una guía metodológica para su uso en la investigación cualitativa en psicología. *Pensando Psicología*, 15(25), 1-24. <https://doi.org/10.16925/2382-3984.2019.01.03>

Eco, U. (1984). *Apocalípticos e integrados*. In *Editorial Lumen* (7ma.). Editorial Lumen. España.

Ernst, G., & Young, P. (2024). Herramientas de inteligencia artificial en la investigación académica y científica: normativas, desafíos y principios éticos. *Medicina*, 84, 1036-1038.

Espinosa, L. (2022). Otras banalizaciones del mal: desigualdad creciente y crisis ambiental. *Araucaria. Revista Iberoamericana de Filosofía, Política, Humanidades y Relaciones Internacionales*, 24(49), 149 - 169. <https://doi.org/10.12795/araucaria.2022.i49.07>

Evangelista, R. (2023). Por uma etnografia do poder na inteligência artificial, no capitalismo de vigilância e no colonialismo digital. *Aurora. Revista de Arte, Mídia e Política*, 16(47), 112-133. <https://doi.org/10.23925/1982-6672.2022v15i47p112-133>

Farias, A. L. (2023). La crisis ambiental y el campo de la ecología política: una perspectiva desde el psicoanálisis freudiano. *Desenvolvimento e Meio Ambiente*, 62, 302-315. <https://doi.org/10.5380/dma.v62i0.85680>

Forni, P., & De Grande, P. (2020). Triangulación de métodos mixtos en las ciencias sociales contemporáneas. *Revista Mexicana de Sociología*, 82(1), 159-189. <http://www.scielo.org.mx/pdf/rms/v82n1/2594-0651-rms-82-01-159.pdf>

Foucault, M. (1976). Vigilar y castigar. Nacimiento de la prisión. In *Sustainability* (Switzerland) (Vol. 11, Issue 1). Buenos Aires: Siglo XXI Editores.

Habermas, J. (1999). *Teoría de la acción comunicativa, I. Racionalidad de la acción y racionalización social*.

Taurus Humanidades.

Hernández-Sampieri, R., & Mendoza Torres, C. P. (2018). Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta (1ra. ed.). México: McGraw-Hill Interamericana Editores.

Izquierdo-Condo, J. S., Váscone-González, J., & Ortiz-Prado, E. (2024). "AI et al." The perils of overreliance on Artificial Intelligence by authors in scientific research. *Clinical EHealth*, 7, 133–135. <https://doi.org/10.1016/j.ceh.2024.09.001>

Juri, Y. E. (2023). La gobernanza de los datos de la soberanía territorial a la soberanía digital. *Revista Quaestio Iuris*, 16(2), 802–820. <https://doi.org/10.12957/rqi.2023.72434>

Klüber, T. E. (2014). Atlas.ti como instrumento de análise em pesquisa qualitativa de abordagem fenomenológica. *ETD - Educação Temática Digital*, 16(1), 5–23. <https://doi.org/10.20396/etd.v16i1.1326>

Llanos-Contreras, O., Hebles, M., & Yániz-Álvarez-De-Eulate, C. (2021). Desarrollo de la actitud emprendedora: Estudio cualitativo de un modelo de formación universitaria. *Revista Española de Orientación y Psicopedagogía*, 32(3), 112–131.

López, J. C. (2021). Desenmascarando datos: Igualdad e Inteligencia Artificial. *Revista Ius*, 15(48), 137–156. <https://doi.org/10.35487/rius.v15i48.2021.740>

Lopezosa, C. (2020). Entrevistas semiestructuradas con NVivo: pasos para un análisis cualitativo eficaz. *Methodos Anuario de Métodos de Investigación En Comunicación Social*, 1, 88–97. <https://doi.org/10.31009/methodos.2020.i01.08>

López-Regalado, Ó., Núñez-Rojas, N., López-Gil, Ó. R., & José, S.-R. (2024). Análisis del uso de la inteligencia artificial en la educación universitaria: una revisión sistemática. *PIXEL-BIT Revista de Medios y Educación*, 70, 97–122. <https://doi.org/10.12795/pixelbit.106336>

Morales, D. A. (2021). Implicaciones jurídicas del algoritmo: derechos intelectuales y privacidad. *FORO. Revista de Derecho*, 36, 111–130. <https://doi.org/10.32719/26312484.2021.36.6>

Ortega-Esquembre, C. (2023). Sobre los diferentes ritmos del derecho y la Inteligencia Artificial. La desincronización como patología social. *Daimon*, 90, 147–161. <https://doi.org/10.6018/daimon.551741>

Otero, M. (2023). ¿Puede la Inteligencia Artificial sustituir a la mente humana? Implicaciones de la IA nn los derechos fundamentales y en la ética. *Anales de La Cátedra Francisco Suárez*, 57, 39–61. <https://doi.org/10.30827/acfs.v57i.24710>

Pacheco-Romero, J., Sandoval, I., & Ramos-Castillo, J. (2023). Inteligencia artificial en la práctica de la ginecología, la investigación y redacción científica. *Rev Peru Ginecol Obstet.*, 69(4), 1–6. <https://doi.org/10.31403/rpgv69i2566>

Petrov, A., Mirzagitova, A., Kuraev, A., & Kirillova, E. (2024). Main threats to human rights and freedoms in the context of digitalization. *Juridicas CUC*, 20(1), 343–357. <https://doi.org/10.17981/juridcuc.20.1.2024.16>

Quispe-Mamani, E., & Ayamamani-Collanqui, P. (2023). Unitarian Illusion in Peru: Recentralization and Intergovernmental Conflicts from the Perspective of Local Governments. *Public Organization Review*. <https://doi.org/10.1007/s11115-022-00665-2>

Quispe-Mamani, E., Chaiña Chura, F. F., Salas Avila, D. A., & Belizario Quispe, G. (2022). Imaginario social de actores locales sobre la contaminación ambiental minera en el altiplano peruano. *Revista de Ciencias Sociale (Ve)*, XXVIII(1), 303–321. <https://doi.org/10.31876/rcs.v28i1.37693>

Quispe-Mamani, E., Porto Bravo, H., Ayamamani Collanqui, P., & Turpo Gebera, O. (2023). Mediatisación y crisis sociopolítica en Perú. Imaginarios y prácticas de actores sociales. *Cuadernos.Info*, 56, 22–43. <https://doi.org/10.7764/cdi.56.58445>

Reyes, L. G., & Mejía, K. A. (2024). Inteligencia artificial en la investigación cualitativa: Análisis bibliométrico de la producción científica indizada en Scopus. *New Trends in Qualitative Research*, 20(4), 1–15. <https://doi.org/10.36367/ntqr.20.4.2024.e1116>

Salgado, A. C. (2007). Investigación cualitativa: Diseños, evaluación del rigor metodológico y retos. *Liberabit*, 13, 71–78.

Sandoval Casilimas, C. A. (2002). Investigación Cualitativa. Bogotá: ARFO Editores e Impresores Ltda.

Sandoval, L. R., Bianchi, M. P., & Varela, M. G. (2022). Anticipar el futuro: la inteligencia artificial, entre ficción e imaginación. *Interacciones En Comunicación*, 2, 1–15. <https://doi.org/10.51385/ic.v2i16.161>

Senthil, R., Anand, T., Somalia, C. S., & Saravanan, K. M. (2024). Bibliometric analysis of artificial intelligence in healthcare research: Trends and future directions. *Future Healthcare Journal*, 11, 1–10.

https://doi.org/10.1016/j.flhj.2024.100182

Tenorio Cueto, G. A. (2021). El derecho a una vida libre de algoritmos. *Revista Ius*, 15(48), 115–135.
https://doi.org/10.35487/rius.v15i48.2021.708

Valles, M. S. (1999). Técnicas cualitativas de Investigación social. Reflexión metodológica y práctica profesional. Madrid: Editorial Síntesis S. A.

Van Brakel, R. (2021). How to watch the watchers? Democratic oversight of algorithmic police surveillance in belgium. *Surveillance and Society*, 19(2), 228–240. https://doi.org/10.24908/ss.v19i2.14325